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Figure 1: Left: Finger tip contact (FT). Right: Finger pad contact (FP).

Abstract
Touchscreen typing on tablet has become popular in modern digital
routine, calling for investigation of more expressive input method
on touchscreen keyboard. In this paper, we propose a novel ap-
proach to augment touchscreen typing experience by integrating
key-press finger posture recognition to extend the input space
of a standard touchscreen keyboard. Our system distinguish be-
tween finger tip contact(FP) and finger pad contact(FP) through
acoustic sensing, enabling seamless switching between normal
and functional input. We evaluate the performance of our system
through offline and online experiments, where we show that our
system achieves an offline key-wise recognition accuracy of up to
96.3%. The online experiment shows a real-time recognition accu-
racy of 94% and 88% in quiet and noisy environments, respectively.
We further conducted a usability study on text formatting task,
which shows that our method significantly outperform the baseline
method in terms of input speed and functionality.
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1 Introduction
Touchscreen typing has become an essential practice in modern
digital routines, given the proliferation of smartphones, tablets, and
other touch-enabled devices in our daily lives. Specifically, more
and more people prefer to use tablets for text entry tasks such as
taking notes, writing emails, and office work[19], as the tablet offers
a portable and intuitive interface, allowing users to perform tasks
efficiently. Although text composition remains the dominant task
for text entry, various text editing tasks, such as cut, copy, paste, and
text formatting[30, 35], are also essential, calling for investigation
of more expressive interaction on the keyboard. Compared to desk-
top devices with physical keyboards that provide extensive support
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for shortcut-based command input (e.g. hotkeys[26]), touchscreen
keyboards do not offer such a unified shortcut feature[6]. Although
touchscreens are capable of providing rich and intuitive input for
general interactions, the transition between touch-based naviga-
tion and typing[8, 18] often disrupts the user experience, making
touchscreen typing less efficient for complex text editing tasks[19].

To alleviate this issue, several researches explored designing
on-keyboard gestures for tablet[4, 7, 21, 22] to extend the func-
tionality of touchscreen keyboards. While on-keyboard gestures
offer an intuitive way to enhance the typing experience, perform-
ing gesture also disrupts the typing experience. On the other
hand, numerous researches have dedicated themselves to explor-
ing enhancing touchscreen-based input modality by detecting on-
screen finger posture through various approaches such as raw
capacitive images[1, 14, 24, 36], acoustic[12, 20], and external
wearables[10, 16, 29]. However, there still remains a notable gap in
research on improving the typing experience, especially on tablets.

In this paper, we present a novel typing technique that seamlessly
integrates functional inputs for typing tasks on tablet touchscreen
keyboards. Our system extends the input space of every single
key on a tablet touchscreen keyboard by distinguishing two types
of finger contact, namely finger tip contact (FT) and finger pad
contact (FP). By seamlessly switching between two finger contact
types during typing, users are allowed to perform additional ac-
tions, such as text formatting commands or text editing shortcuts
directly within the typing interface. We implement an augmented
touchscreen keyboard that enables real-time finger contact types
recognition through acoustic sensing. Our system can be deployed
on any off-the-shelf tablet without requiring any external hardware
or manipulating the system kernel. The offline experiment shows
that our system achieved an average general accuracy of 93.5% and
an average user-dependent accuracy of up to 96.3%. Additionally,
an online between-subject user study indicates that our system
performs robustly in both quiet and noisy environments, with key-
wise accuracies of 88% and 94%, respectively. We further conduct a
system usability study on a text formatting task using our method.
The result shows that users complete the task significantly faster
with our system compared to the traditional one.

2 Related Works
Our work is largely inspired by existing works on touch posture
sensing on touchscreens and augmented touchscreen keyboard for
typing.

2.1 Touch Posture Sensing on Touchscreen
Touchscreen-based interaction dominates the input channel on
most modern mobile devices, including smartphones, tablets, and
smartwatches. Numerous research works have dedicated them-
selves to extending the input space of a touchscreen by detecting
touch posture. TapSense[12] detects finger impact parts includ-
ing tip, pad, nail, and knuckle on a touchscreen through acoustic
sensing. They collect data and evaluate their concept on a proof-
of-concept device with a back-mounted stethoscope. In addition
to the acoustic-based method, leveraging the raw capacitive im-
age of finger-touching patterns to retrieve the hand posture is a
common approach in the community. Xiao et al.[36] proposed a

pioneering work to estimate the 3D finger angle on both smart-
phone and smartwatch utilizing raw capacitive image. They built a
proof-of-concept device by modifying the system kernel to obtain
raw capacitive image data for estimating 3D finger angle, which
inspire many following works on exploring raw capacitive image
data to enrich on-screen interaction[13, 14]. Raw capacitive images
have also been utilized to detect contact fingers on the touchscreen
of devices such as smartphone[23], tablet[17], and smartwatch[9].
Researches also leveraged external hardware to sense touch posture,
including finger-worn optical sensor[10, 11], forearm-worn elec-
tromyography measuring devices[2], and ring-form devices[16, 29].

Although the aforementioned works offer solutions for detecting
on-screen touch posture in different contexts, there are still facing
limitations. For example, raw capacitive data can only be obtained
by manipulating the system kernel[13, 14, 36], which offers extra
burden for the deployment on commercial devices. For literature
that requires external hardware would restrict the system flexibility
in a mobile context. We extend Harrison et al.’s idea[12] by imple-
menting and evaluating a real-time touch posture sensing system
to facilitate typing experiences. Our system offers a fast and robust
real-time touch posture sensing approach for touchscreen keyboard
without requiring any external hardware or kernel manipulation
that can be easily deployed on any off-the-shelf device.

2.2 Augmented Touchscreen Keyboard for
Typing

Various approaches have been proposed to facilitate the typing
experience by augmenting the touchscreen keyboard. Researches
have explored improving typing efficiency by adaptively optimizing
the touchscreen layout[15, 37]. Numerous researches also dedicated
themselves on exploring gesture-based input to facilitate text entry
efficiency[32, 34] and text editing experiences[21, 22, 31]. While
gesture keyboards[4] are increasingly popular as it shows an advan-
tage to improve the touchscreen keyboard typing speed, they are
suffering from the gesture ambiguity problem that would increase
the typing error rate[3]. Smith et al.[34] investigated a keyboard
layout optimization method to reduce the error rate of a gestural
touchscreen QWERTY keyboard by 52%. Jochen Rick[32] evalu-
ated through 22 virtual keyboard layouts using a Fitts’s Law-based
model to explore an optimal keyboard layout for gesture typing.
GeShort[31] proposed gesture-based input to facilitate command-
based text editing and formatting tasks about 11% and 22% faster
respectively. Per Ola Kristensson and Shumin Zhai[22] introduced
a series of stylus-based stroke gestures to enable fast command
selection. Fennedy et al.[6] also explored supporting soft keyboard
hotkey with shortcut-akin mechanism for command execution.

3 System Design
Previous research reveals that sound propagated through the device
would produces a stronger response than through the air[5]. We
implemented a system to process real-time acoustic data captured
by the device’s built-in microphone to enable key-press finger con-
tact types detection. The system pipeline is illustrated in Figure. 2.
Please see the Appendix A for the implementation details.
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Figure 2: Illustration of the system pipeline. The pipeline mainly consists of three key component. The Adaptive Noise
Cancellation component adaptively suppress background noise from the acoustic signal stream. The Keystroke Detection
component separate valid keystroke segment from the stream. The Key-Press Finger Contact Types Recognition process the
keystroke segment and predict the finger contact types.

3.1 Adaptive Noise Cancellation
During practice, we observed that background noise significantly
influences system performance. To mitigate the background noise
effect, we implemented a series of signal processing techniques on
the captured keystroke acoustic signal. Previous research[27] has
identified two main types of background noise in mobile keyboard
use cases, namelywhite noise and ambient noise. To address this, we
first applied a band-stop filter with a frequency stop range between
300Hz - 2kHz to remove white noise of each keystroke signal. We
consider that given the mobility of tablet devices, the ambient noise
would vary depending on the user’s environment. To this end, we
adopted an adaptive noise canceling algorithm to alleviate ambient
noise based on spectrum thresholding[33]. Specifically, our system
seamlessly captured a 1-second audio clip as the noise fingerprint
once the keyboard was activated. We then performed a Short-time
Fourier transform(STFT) on the noise fingerprint to compute the
noise mean and standard deviation for each frequency component
over time. The aforementioned statistical parameters are then used
to establish a noise threshold for each frequency component𝑇𝐻𝑅𝑓
in the keystroke signal:

𝑇𝐻𝑅𝑓 = 𝜇𝑓 + 𝑛𝜎𝑓 (1)

where 𝜇𝑓 and 𝜎𝑓 are the mean and standard deviation of the noise
decibel scale, 𝑛 denote number of standard deviations above mean.
In practice, we set 𝑛 to 1.5. To preserve more keystroke information,

the mask is smoothed over time and frequency domains to avoid
sudden changes before being applied to the input signal. The noise
cancellation process was performed in the frequency domain. After
that, we transform the filtered signal back to the time domain
through inverse Fourier transform.

3.2 Keystroke Detection
Our system leverages the buffering technique to detect real-time
keystroke acoustic signals. For every keystroke event detected from
the touchscreen, we record both past and future frames from an
audio buffer with size 6720 frames(140ms) under the sample rate of
48kHz in a sliding-window manner. Notably, keystroke events typi-
cally occur in rapid succession during typing. Previous research[28]
has identified that the average keystroke interval during typing is
around 100ms. Therefore, we set the window size to be less than
100ms to mitigate the window overlapping problem. We further
conducted an experiment(Section. 4.3) to investigate the impact of
window size on system performance. For every captured buffering
window, we implement an adaptive peak-finding algorithm to fur-
ther locate the keystroke hit peak. Specifically, we define a peak
threshold by calculating the averaged sum of the mean and standard
deviation in every window. We consider a typical keystroke should
meet the following conditions: (i) The value of the keystroke peak
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Table 1: Classification results of key-dependent model and key-independent model

Key-Independent Key-Dependent Latency(ms)Accuracy Recall F1 Accuracy Recall F1
KNN 0.927 0.938 0.929 0.935 0.941 0.935 90
SVM 0.922 0.941 0.924 0.924 0.957 0.929 150
RF 0.871 0.878 0.873 0.900 0.939 0.907 60

MLP 0.929 0.965 0.933 0.929 0.971 0.929 140
CNN 0.929 0.949 0.933 0.933 0.957 0.937 250

frame is the maximum within its buffer. (ii) The value of the key-
stroke peak frame must exceed the root mean square (RMS) value
in the window by the threshold. (iii) The duration of the keystroke
should exceed 60ms. (iv) The time intervals between the adjacent
keystrokes should be at least 70ms. The keystroke segment was
further smoothed by a Savitzky-Golay filter with the window size
of 5.

3.3 Key-Press Finger Contact Types Recognition
As FT and FP impact produce different acoustic characteristics, we
extract the acoustic feature in frequency domain for the recogni-
tion as previous researches on acoustic sensing suggested[5, 27].
To this end, we evaluated various acoustic features extraction tech-
niques across multiple classifiers, including Mel-Frequency Cep-
stral Coefficients (MFCC), Fast Fourier Transform (FFT), and Short-
Time Fourier Transform (STFT). We empirically chose MFCC which
shows superior performance in terms of both latency and recogni-
tion accuracy for our task.

4 Evaluation
4.1 Data Collection
Through the word of mouth, we recruited 12 participants aged
from 19 to 25(Mean=22.1, SD=2.08) from a local university for data
collection. Six of them identified themselves as male and six as
female. All of them were experienced tablet users. 11 of them were
right-handed while 1 of them was left-handed. The study lasted
2.5 hours and participants received 50 RMB as compensation for
their time. The study was conducted in an office where the average
noise level is 42dB. Participants were provided a Samsung Tab S9 FE
tablet with a custom data collection application running on it. The
data collection application captures acoustic data in a sample rate of
48kHz. All participants were required to transcribe 100 phrases in FT
and FP manner respectively. Half of those phrases were randomly
chosen from a popular phrase set for text entry task[25], while we
choose the other half of phrase from a holoalphabetic sentence
set1 to mitigate the frequency imbalance across different alphabet.
During the study, we asked the participants to perform the typing
as naturally as usual to avoid data bias. As a proof-of-concept,
we only consider 36 character keys(i.e. letters and digits) and two
most commonly used punctuations(i.e. periods and commas) in
our research. As a result, we collected approximately 102,000 valid
keystroke signal samples across 38 keys.

4.2 Offline Classification Performance
4.2.1 Key-Dependent Model and Key-Independent Model. In this
experiment, we compared the performance of a set of machine
learning classifiers on classifying key-press finger contact types
on the collected dataset. We consider that the impact of the finger
on different positions on the touchscreen produce distinct acoustic
characterizes due to the sound propagation path differences. There-
fore, we train and evaluate our method in both and key-independent
scheme and key-dependent scheme on model performance. Specifi-
cally, for the key-independent scheme, we train onemodel to predict
data from all keys. We form a testing set that averagely consists
of 4500 samples for each key, while we mix the rest of data before
splitting them into 8:2 ratio as a training set and validation set,
respectively. For the key-dependent scheme, we train and test 38
key-dependent models for each key respectively by splitting data
of every individual key into training, validation, and testing sets
in an 8:1:1 ratio. We also experimented with the prediction latency
of each candidate model. Table 1 summarizes the test accuracy,
recall, and F1-score for each classifier using MFCC features. The
result shows that the overall performance of the key-independent
schemewas lower than that of the key-dependent scheme. Although
Random Forest (RF) reaches the lowest latency during our offline
experiments, it is suffering from the low accuracy problem, while K-
Nearest Neighbors (KNN) achieves the best classification accuracy
with a latency only 30ms greater than RF.

4.2.2 User profiling. We further conducted experiment on user
profiling, where we train user-dependent models in key-dependent
scheme. Specifically, We adopt a 4-fold data splitting scheme, where
we randomly select 4 user data for testing, while we used the data
from the rest of the users for training and validating. We repeated
this process until all users were tested and averaged the perfor-
mance for each classifier. The result was showed in Table. 2, where
KNN outperforms the other method in terms of classification accu-
racy.

Taking consideration of both accuracy and latency, we chose the
KNN model under the key-dependent training scheme for further
analysis and experiments.

4.3 Effect of Window Size for Keystroke
Detection

To investigate the optimal setting for real-time implementation,
we conducted an experiment to evaluate the impact of window

1https://mseffie.com/assignments/calligraphy/Plethora%20of%20Pangrams.pdf

https://mseffie.com/assignments/calligraphy/Plethora%20of%20Pangrams.pdf
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Figure 3: Online system performance. (a) Key-wise real-time classification accuracies in office area. (b) Key-wise real-time
classification accuracies in restaurant area.

Table 2: Classification results of user-dependent models

Accuracy Recall F1
KNN 0.963 0.970 0.963
SVM 0.948 0.966 0.950
RF 0.916 0.931 0.918

MLP 0.925 0.965 0.930
CNN 0.941 0.967 0.943

Table 3: Classification accuracy of different window size

front
rear 20ms 30ms 40ms 50ms

20ms 0.896 0.909 0.927 0.924
30ms 0.905 0.925 0.935 0.933
40ms 0.925 0.924 0.938 0.933
50ms 0.917 0.922 0.936 0.934

size for keystroke detection on system performance. To this end,
we adopted a grid-search strategy by iteratively test through all
combinations of the front frame and rear frame of the window.
Consider the average keystroke interval during typing is averagely
100ms[28], we test both front frame and rear frame in 20ms, 30ms,
40ms, and 50ms. We run the experiment on our dataset using KNN
model, and the classification accuracy is showed in Table.3. The
result shows that the combination of 40ms front frame and 40ms
rear frame achieved the best performance.

4.4 Online Performance
We further conducted a between-subject user study to evaluate
the real-time performance of our system, particularly to experi-
ment with the real-time detection accuracy in both quiet and noisy
environment. To this end, we invited 6 participants aged from 23
to 25 (Mean=24.2, SD=0.68) from a local university and randomly
divided them into two groups for two environments: 1) Office area
(noise level = 44dB), 2) Restaurant area (noise level = 66dB). Each
participant in both group was required to transcribe 14 random
holoalphabetic sentences and 6 random number sequences in both
FT and FP mode, respectively. Our system predicts the contact
types in real-time and stored the results locally. We averaged out

the accuracy in both FT and FP mode for every key under each
environment, and showed the results in Fig.3.

The result shows that the average real-time key-wise recognition
accuracy in quiet environment is 94%, while the accuracy drops
to 88% when the environment goes noisy. Accuracy variances are
also observed across keys. In particular, the accuracy for those keys
that are close to both the left and right side are relatively higher
than those that are in the middle. This could be caused by the affect
of microphone location, where the two built-in microphones on
the device are located on both the left and right side(landscape
mode). Therefore, for keystroke event occurring close to either side
would produce a larger signal to the corresponding sidemicrophone,
which would increase the recognition accuracy.

5 Usability Study on Text Formatting
To evaluate our system in a real-world usage scenario, we con-
ducted a usability study focused on the text formatting task. We
adopt our method to facilitate basic text formatting tasks (i.e. bold,
italic, underline), where we allow users to switch between normal
character input and formatted character input by changing their
key-press finger contact types. A within-subject user study was
conducted to compare the basic text formatting operation with the
default system keyboard as a baseline condition and our method.
Taking the bold task as an example, with the default system key-
board, users are required to manually select the target phrase and
then choose the bold command from a pop-up menu. In compari-
son, with our method, the same task can be simplified by switching
the finger contact types from FP to FT to apply the bold command
during the text entry stage. We developed a demo application on
the same devices we used for data collection, where we allowed
users to switch between different text formatting modes through a
floating menu.

5.1 Tasks and Procedure
We invited six participants to the study. Their age are between 24
and 27 (Mean=24.7, SD=1.24). Five participants identified them as
male, and one identified as female. They reported their experience
with text editing on tablet with touchscreens (average score=2.7/5,
SD=0.75), smartphone touchscreen text editing experience (average
score=3.2/5, SD=1.34), and physical keyboard text editing experi-
ence (average score=3.5/5, SD=1.12). The study was conducted in
an office area. During the study, each participant is required to
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transcribe five mix-formatting sentences under two conditions: the
baseline condition and ours, presented in a Latin-square counterbal-
anced order. We measured the total time spent on completing the
task, and all participants were asked to fill out a System Usability
Scale (SUS) survey after each condition. The detailed tasks and
questionnaires are shown in the Appendix B.

5.2 Results
The average task completion time of our method is 283.58 seconds
(SD=37.81), which is lower than the average task completion time
of the baseline condition 328.46 seconds (SD=56.87). A Wilcoxon
Signed Ranks Test shows that the task completion time of our
method is significantly lower than the baseline condition (Z=2.024,
p<0.05). We show the SUS results in Fig.4. The average total SUS
score of our method is 35/45 (SD=6.08), and the average total SUS
score of the baseline condition is 26.8/45 (SD=3.77). For the indi-
vidual items of SUS questionnaire, Wilcoxon Signed Ranks Test
shows that participants rate significantly high input speed (Z=2.041,
p<0.05) and high functionality (Z=2.060, p<0.05) with our method
then the baseline condition. One participant (male, 25 years old)
explicitly mentioned that "Your system is very interesting. Chang-
ing finger contact types is very easy for me, and I quickly learned to
use this method." Another participant (female, 24 years old), while
switching from our method to the baseline condition, commented
that, "I’ve already started to miss your system. Compared to this,
changing finger contact types is more convenient and efficient."

6 Limitation and Future Works
Although our proposed system demonstrates promising results
in detecting key-press finger contact types and shows potential
applications in the text formatting task, there are several limitations
that merit further investigation and improvement.

One of the limitation of our method is its relatively low recog-
nition accuracy in noisy environments, especially for real-time
implementation. Future work will focus on enhancing the robust-
ness of the recognition system by collecting more training data in
various of environment conditions or exploring more advance sig-
nal processing techniques. We also consider leveraging multi-modal
sensor fusion techniques, such as integrating the IMU sensor data
as an input feature to facilitate the recognition task. Moreover, as a
proof of concept, we only implement and test our system on one
device. Since the hardware configurations(e.g. microphone quality
and location)on different device are various, we plan to deploy and
evaluate our system on more devices.

In addition, our usability study shows potential on adapting
our method on text formatting task in a mode switching manner.
However, this still required providing an external menu for mode
switching, which may disrupt the flow of typing during more com-
plex text editing task. In the future, we would investigate more
effective and intuitive manner to support more complex and com-
prehensive task with our method.

7 Conclusion
In this work, we demonstrated an innovative approach to augment
the tablet typing experience by integrating key-press finger contact
types as input. Our system captures real-time keystroke acoustic

signals to distinguish between two finger contact types, namely
finger tip and finger pad, to extend the input space of a standard
touchscreen keyboard. We perform offline evaluation and online
evaluation on our system, where the offline experiment shows that
our system achieve a key-wise recognition accuracy of up to 96.3%
and the online evaluation achieve an average recognition accuracy
of 94% and 88% in quiet and noisy environment respectively. We
further conduct a usability study on text formatting task, where we
show that our method significantly outperform the default baseline
method in terms of input speed.
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A APPENDIX A: IMPLEMENTATION
We built a customized application on Samsung Tab S9 FE tablet with
stereo built-in microphones located on the left side and the right
side(landscape orientation) of the device for audio data streaming.
The application captures the real-time acoustic signal in a sample
rate of 48kHz and transmit the signal through TCP/IP protocol
to a server in 140ms chunks. We implement a python server on a
laptop PC with one RTX4060 NVIDIA GPU, 8GB RAM, and one
Intel i7-13650HX CPU.

B APPENDIX B: USABILITY STUDY
B.1 Questionnaire
Fig.4 shows the detailed questionnaire results of our usability study.
Each question can be rated from 0 to 5, of which 0 is completely
not agree and 5 is completely agree.

B.2 The Sentence Transcription Tasks
Five mix-formatting sentences that we used for the usability study
are shown in Fig.5, including two holoalphabetic sentences and
three sentences from existing online documents.
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Figure 4: System Usability Scale results

Figure 5: Sentence transcription task of the usability study
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