
Int. J. Human–Computer Studies 155 (2021) 102699

Available online 6 August 2021
1071-5819/© 2021 Elsevier Ltd. All rights reserved.

FritzBot: A data-driven conversational agent for physical-computing
system design

Taizhou Chen , Lantian Xu , Kening Zhu *

School of Creative Media, City University of Hong Kong, Hong Kong

A R T I C L E I N F O

Keywords:
Natural-language interaction
User interface
Physical computing
Design
BiLSTM
CRF

A B S T R A C T

Creating physical-computing systems, especially selecting correct electronic components, assembling the circuit,
and implementing the program, can be challenging for novice users. In this paper, we present FritzBot, a data-
driven conversational agent supporting novice users on creating physical-computing systems through natural-
language interaction. FritzBot is built upon the structure of a BiLSTM-CRF (bi-directional Long Short-term
Memory Network and Conditional Random Field) neural network, as a plug-in for Fritzing. The neural
network is trained on a lexical circuit-event database derived from 152 students’ reports on their physical-
computing course projects. By processing the user’s textual description on his/her physical-computing idea,
FritzBot can extract the causal relationships between the input and the output events, identify the corresponding
electronic components, and generate the Arduino-based circuit and the code along with the step-by-step con-
struction guidelines. Our user study shows that compared to the original Arduino software and the circuit-
autocompletion software available in the commercial market, FritzBot significantly shortens the time spent,
reduces the perceived workload, and enhances the satisfaction/joy for inexperienced users on designing and
prototyping physical-computing systems.

1. Introduction

Creating physical-computing systems through circuit design and
micro-controller programming has became a common practice perme-
ating into various fields such as maker activities, STEM education, new
media art, product design, and so on. There have been various hardware
platforms (Arduino, 2019; Bea, 2019; Raspberry Pi, 2019) and software
(Knörig et al., 2009; Tinkercad, 2019) supporting novice users with
minimal technical knowledge to create functional electronic circuits.
While these tools have lowered the entry bar of physical computing, they
still require technical background to a certain extend, such as the
knowledge of electrical theory, a large library of components, and how
to use them. Along with the rapid-prototyping electronic platforms, the
specially packaged programming languages/libraries and the visual
programming languages (e.g. Scratch, 2019) can simplify the coding
processes. However, they still require a basic level of programming
knowledge (e.g. syntax, storage, control flow, Boolean logic, etc.), which
many designers, especially students, may not have. Recent research has
shown that it was challenging for most users to construct a circuit with
correct code for a physical-computing task, even for those who have a

technical background (Mellisy et al., 2016; Waterhouse, 2016).
While existing tools for circuit auto-completion (Circuito.io, 2019;

Lo et al., 2019) can simplify the process of circuit design, these systems
still require users to decide/choose what components to use at the very
beginning. Though novice users often have high-level concepts/ideas
about what they want to make, it could be still challenging for them,
without prior technical knowledge/experience, to decide what elec-
tronic components to use (Mellisy et al., 2016). In addition, these sys-
tems do not provide assistance on micro-controller programming to
make the circuit actually functional as desired. There is also research
focusing on circuit and code generation through dragging and dropping
logical action blocks (Anderson et al., 2017). However, it still requires
users to have prerequisite knowledge of programming logic. Further-
more, the aforementioned systems are all GUI-based, while research
shows that combining both graphical widget interaction and
natural-language interaction can enhance the system capability than
either technology could individually (Cohen, 1992). More recently, re-
searchers investigated leveraging the voice user interface to support
circuit prototyping (Kim et al., 2019). Yet, it still requires users to have
basic knowledge of circuit principle and programming logic to describe

* Corresponding author.
E-mail address: keninzhu@cityu.edu.hk (K. Zhu).

Contents lists available at ScienceDirect

International Journal of Human - Computer Studies

journal homepage: www.elsevier.com/locate/ijhcs

https://doi.org/10.1016/j.ijhcs.2021.102699
Received 14 August 2020; Received in revised form 15 July 2021; Accepted 27 July 2021

mailto:keninzhu@cityu.edu.hk
www.sciencedirect.com/science/journal/10715819
https://www.elsevier.com/locate/ijhcs
https://doi.org/10.1016/j.ijhcs.2021.102699
https://doi.org/10.1016/j.ijhcs.2021.102699
https://doi.org/10.1016/j.ijhcs.2021.102699
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2021.102699&domain=pdf

International Journal of Human - Computer Studies 155 (2021) 102699

2

their ideas with a pre-defined technical format.
In this paper, we present FritzBot, a BiLSTM-CRF-based conversa-

tional agent offering assistance for novice users on circuit construction
and programming through natural-language interaction. After analyzing
152 student reports from an undergraduate physical-computing course
in a local art school, we find that physical-computer concepts are mostly
described in the form of cause/input and effect/output, such as “When
the user <e1>swings </e1>the baton, a bird will <e2>sing </e2>a
song.” (e1 and e2 indicate the input and the output events, respectively),
to indicate the input and the output elements. With this consideration,
the conversational engine of FritzBot is developed based on a BiLSTM-
CRF neural network to identify the input events and the output events
in users’ textual descriptions. When a user enters the textual description
of his/her physical-computing idea, FritzBot will extract the causal
relationship, identify the input and the output components, and
generate the corresponding Arduino-based circuit and code along with
the construction guidelines. Meanwhile, FritzBot will generate textual
responses to guide the user to improve his/her concept if missing ele-
ments are found. Our between-subjects user study with twenty-four art/
design students shows that compared to the original Arduino software
and the circuit-autocompletion software in the market, FritzBot could
significantly reduce the time spent and the perceived workload, and
enhance the user satification/joy for the physical-computing task.

The primary contributions of this paper are:

1) We construct a lexical circuit-event database for modeling novice
users’ natural-language behaviors on physical-computing system
design and development.

2) For proof of concept, we develop FrtitzBot, a BiLSTM-CRF-based
system leveraging natural-language interaction for designing and
creating Arduino-based physical-computing systems. The data set
and the source code for model training are available at https://gith
ub.com/taizhouchen/FritzBot.

3) We conduct a user study showing the effectiveness of FritzBot on
supporting novice users’ physical-computing task through natural-
language interaction.

2. Related work

In this session, we will discuss prior works on the conversational user
interfaces for creative tasks and the interactive supporting tools for
circuit design and prototyping. We will also discuss existing works on
the deep-learning model for the named-entity recognition task in
natural-language processing, which is the core algorithm for FritzBot.

2.1. Conversational user interfaces

Natural-language-based conversational user interface have been
widely researched in the past few decades in several domains, including
smartphone assistant (Bixby, 2019; Li et al., 2017; 2018; 2019), TV as-
sistant (Coelho et al., 2011), public art creation (Fernando et al., 2009),
image editing (Laput et al., 2013), web automation (Lau et al., 2010),
vehicle interface (Lin et al., 2018; Sung et al., 2019), and database
management (Thanisch, 1995). Before the era of machine learning for
natural-language processing, controlled natural language (CNL) (Kuhn,
2014) was widely applied in various domains. The recognition of CNL
was achieved by constructing subsets of natural languages that are ob-
tained by restricting the grammar and vocabulary in order to reduce or
eliminate ambiguity and complexity. However, the specific keywords
and grammars may increase the users’ learning efforts (Williams et al.,
2014). FritzBot was initially inspired by GameChangineer (Zhan and
Hsiao, 2019), a platform that allows users to create computer games
through natural-language-based programming. It extracts the game
mechanism from an English sentence with per-defined keywords and
sentence formats. Similarly, Vajra (Schlegel et al., 2019) proposed an
end-user programming paradigm for Python. It allows users to compose

Python programs through natural-language description. PixelTone
(Laput et al., 2013) combines speech and direct manipulation for image
editing. The user study shows that the integration of natural language in
the task of image editing can effectively improve the working efficiency.
Recently, Srinivasan et al. (2019) introduced an image-editing method
combining both touch and speech inputs. While the aforementioned
researches showed the benefits of natural-language interaction on
various creative processes, the potential of leveraging natural-language
interaction on supporting physical-computing prototyping tasks is not
fully explored yet. To construct a physical-computing system, like in
other creative tasks, novice users often can verbally describe their ideas,
but may not know which components to use. Built upon the framework
of BiLSTM-CRF neural network, FritzBot supports novice users, such as
inexperienced designers and artists, to create a functional
physical-computing system by simply describing their ideas in natural
language.

2.2. Circuit-design and -prototyping interface

Many software have been developed to facilitate breadboard circuit
design. Fritzing (Knörig et al., 2009) offers a drag-and-drop interface for
both novice and experienced users to create virtual breadboard circuits
using common electronic components. As an open-source software,
Fritzing has been widely used in makers’ community. Virtual Bread-
board (VirtualBreadboard, 2019) and TinkerCAD (Tinkercad, 2019)
provide similar functionalities as Fritzing does, but with a build-in
simulator allowing user to debug their circuit and code. Circuito.io
(2019) could automatically completes the circuit connection after user
drag and drop the components. Similarly, AutoFritz (Lo et al., 2019)
provide a circuit auto-completion function by analysing online Fritzing
projects. Although these tools could give users guidelines for connecting
components, it is common that some novice users have no idea of what
component they should use to achieve the desired functions. Moreover,
composing computer programs for micro-controller is another challenge
for novice users who want to create physical-computing systems. A
recent study shows that only six out of twenty participants could suc-
cessfully complete both hardware and software parts of a simple phys-
ical computing task (Waterhouse, 2016). Trigger-Action-Circuits
(Anderson et al., 2017) simplifies the circuit logic into a high-level
behavioral description, which is easier to understand. However, it still
requires users to have basic knowledge of computer logic. Wu and Yang
(2019) develop Proxino, a tool that blends virtual and physical worlds
for prototyping circuits. While these interfaces provide different levels of
support for prototyping physical-computing systems, users sometimes
still have to obtain basic, sometimes even advanced, circuit and pro-
gramming knowledge. More recently, Kim et al. developed HeyTeddy
(Kim et al., 2019), a voice interface for functional circuit prototyping.
Their study proved that with the support of voice input, the circuit
prototyping efficiency could be increased. Although HeyTeddy provides
a similar idea as FritzBot, that is, introducing natural language inter-
action for circuit prototyping, HeyTeddy still requires users to have basic
knowledge of circuit and logical programming to describe the desired
features in a pre-defined technical format, while FritzBot was designed
for more novice users. Taking a hand-waving robot as an example,
HeyTeddy user needs to identify the key component (i.e. a servo motor
here), wire the component circuit, and provide the voice command such
as “write high/low to pin#”; In FritzBot, the user just need to enter a
natural sentence like “I want to make a robot that waves its hand.”, and
FritzBot dynamically generates the corresponding Arduino-based circuit
and code with the support of the lexical circuit-event database and the
machine-learning model. In addition, voice-based user interfaces may
not be conducive to privacy and noisy environments, such as a classroom
with many students.

T. Chen et al.

https://github.com/taizhouchen/FritzBot
https://github.com/taizhouchen/FritzBot

International Journal of Human - Computer Studies 155 (2021) 102699

3

2.3. Named-entity recognition for natural-language processing

The conversational engine of FritzBot was built upon the algorithm
of named-entity recognition for natural-language processing. In this
work, we form our database by extracting all the cause-effect sentences
from the students’ physical-computing project reports. The essential
task of Fritzbot’s conversational engine is to recognize the cause phrase
entities as the input events and the effect phrase entities as the output
events, from the user-input sentence which can be modeled as a
sequence of words. Most existing sequence-tagging models are based on
the linear statistical models, mainly including Hidden Markov Models
(HMMs) (Rabiner and Juang, 1986) and conditional random fields
(CRFs) (Lafferty et al., 2001). With the emerging technology of deep
machine learning, recurrent neural networks (RNNs) were designed to
operate on sequential data, but they tend to be biased towards their most
recent inputs in the sequence (e.g., neighboring words in a sentence)
(Yoshua Bengio et al., 1994). This makes this type of model not so
suitable for natural-language processing. Long Short-term Memory
Network (LSTM) (Hochreiter and Schmidhuber, 1997) and bidirectional
LSTM (BiLSTM) (Schuster and Paliwal, 1997) were proposed to capture
long-range dependencies in the data sequence, and it has been proved to
outperform traditional RNNs architecture in video processing (Yue-Hei
Ng et al., 2015), sketch encoding (Ha and Eck, 2017), and sensor signal
processing (Huang et al., 2018). Named-entity recognition task, namely
sequence tagging task, was highly relied on both past features (previous
few words) and future features (next few words) in the input sequence.
Combining BiLSTM and CRF proved to perform very well on
named-entity recognition task (Huang et al., 2015; Lample et al., 2016).
In FritzBot, we adopt the technique of BiLSTM + CRF (Huang et al.,
2015), to extract the causal relationships in the user’s natural-language
description of his/her physical-computing idea.

3. Natural language and circuit prototyping

To understand how natural-language interaction can be used to
support the task of creating physical-computing systems, we first study
how novice users, mainly art/design undergraduate students, describe
their physical-computing ideas in natural language.

3.1. Collection of novice users’ physical-computing description

In the current work, we identify art and design undergraduate stu-
dents as our target user group, as they may have limited experience in
technical development but could be often motivated to prototype their
art/design ideas. We analyse 152 student-project reports from an
Arduino-based physical-computing course which has been offered in the
past three years in a local university. The purpose of this analysis is to
understand how users with beginner/intermediate levels of knowledge
on coding and circuit prototyping may describe their physical-
computing ideas, and how the description would be mapped to elec-
tronic components and circuits. This course is offered to the second-year
undergraduate students of interactive art and design, with the prereq-
uisite knowledge of basic computer programming. In the end of the
course, the students need to finish a creative physical computing project
using Arduino (Arduino, 2019). They need to answer two main ques-
tions in details: “What they build” and “How they do it”, in their project
reports. Under the “What they build” section, the student needs to
generally describe his/her idea, and describe the interactive features.
Under the section “How they do it”, the student needs to report the
technical details of the system implementation, include what electronic
components they use, how they work, the circuit schematic, and the
code.

We manually went through all the reports, and observed that most of
the students tend to describe their system ideas in a form of logical
causal connection (i.e. input causes output). Among all the student re-
ports, 126 reports describe their systems using the cause-effect

sentences. For instance, a student describes his system as “When player
lift the dumbbell five times, one of the LED would be turned on, and while
every single LED light up, theres a ringtone to remind you”, and another
students describes “When we open the cover on the top of the box and let
light in, it will trigger the light”. For the rest of the student reports, ten
described their system functions directly using the object names, such as
“piano” (7) and “guitar” (3); nine reports described their output as video
or animation on the computer screen, instead of the output in a physical-
computing system; nine systems were described in a too general manner,
such as “The light reacts to user’s different input”. The aforementioned
non-causal system description are out of the focus of our current paper.
In addition, exiting works tend to describe and construct the mathe-
matical models of the controlling systems (e.g., robots) based on the
causality mapping between their input and output (Boland, 1979; Hart
et al., 1972; Iwakiri and Matsumoto, 2011). To this end, we focus on the
cause-effect sentences for constructing our database. In total we extract
154 cause-effect sentences that are used to describe the features of the
physical-computing systems. We categorize these sentences into in the
four common patterns shown in Table 1. All these sentences consist of
causal relation, including one or multiple pairs of cause and effect
events. Therefore, we consider that while describing their ideas, most
students tend to describe the system as a black box which will take the
input event as the cause, and provide the output event as the effect. We
construct a linguistic model for describing a physical-computing system
as “a causal sentence encoding the input and the output events” as follow.
For these 154 sentences, we invited an English teacher to label the cause
terms (i.e. input) as “<e1 >... </e1>” and the effect terms (i.e. output)
as “<e2>... </e2>”. For instance, in Case 1 in Table 1, the student
wants to make a baton to control a toy bird singing. From his/her
description, it is a system that takes the “swing” event as input, causing a
“sing” event. To keep the consistency for later system implementation
and reduce the ambiguity of multiple events, we label the verb phrases
as the input/output events prior to the nouns in a sentence. Based on our
analysis, some systems consist of multiple inputs and outputs. In Case 2
in Table 1, the student designs a toy stick reacting to different inputs. In
this case, both “press” and “wave” are denoted as the input events while
both “played” and “blinked” are the output events. Case 4 shows an
example of one input, “opening”, corresponding to multiple outputs,
“turn on”, “turning around”, and “plays”.

3.2. Lexical circuit-event database

Based on the causal sentences extracted from students’ reports, we
construct a lexical circuit-event database, to study the mapping between
words and electronic components. For each project report, we manually
extract the used electronic components. For example in Case 1 in
Table 1, the student uses an Inertial Measurement Unit (IMU) to detect
the “swing” movement, and a buzzer to play the music. Therefore, we
can create a semantic correlation for the input event “swing” with the
component “IMU”, and the output event “sing” with the output
component “speaker”. Though we mostly label the verb phrases as the
events prior to the nouns to reduce ambiguity, ambiguity may still occur
occasionally. Some events and verb phrases could be general, and may
correlate with multiple components. For instance, the correlated
component for the event/word “detect” highly depends on its object. In
Case 3 mentioned above, the student wants to make an automatic irri-
gation system that can automatically water the plant if there is not
enough moisture in the soil. From his/her description, we label “detect”
and “release” as the input and the output events respectively, while
“detect” and “release” can be related to several electronic components.
In this case, as the student implemented, the component for “release” is
“water pump” according to its object “water”, and the component for
“detect” is “humidity sensor” according to its object “humidity”. To
identify the ambiguity, we compute the Shannon Entropy (Shannon,
1948) for each event as shown in Eq. (1).

T. Chen et al.

International Journal of Human - Computer Studies 155 (2021) 102699

4

Table 1
Examples of cause-effect sentence from the reports.

Fig. 1. All event phrases extracted from 126 student project reports which use causal sentences for project description. The number in bracket indicates the
component’s usage frequency. Star symbol (*) highlights the merged event. Dagger symbol (†) denotes the ambiguous events.

T. Chen et al.

International Journal of Human - Computer Studies 155 (2021) 102699

5

Hs =
∑n

i=1
piIi = −

∑n

i=1
pilog2pi (1)

where pi is the probability of a component to occur under event i, n is the
total number of components. I is the information function of event i with
probability pi, which is defined as log2pi by Shannon (1948). The en-
tropy values for all the labeled events are shown in Fig. 1. Hs = 0 in-
dicates the events that are unambiguous. The higher the entropy score is,
the more ambiguous it is. We treat an event with a entropy score lager
than 0.5 as the ambiguous event for additional processing in our algo-
rithm which will be described later in Section 5.2. In total we found 74
unique phrases for the input events and 72 unique phrases the output
events. To regularize the event, we apply a merging scheme for the event
phrases that have similar meaning. For example, we merge “move” and
“movement”, “spin” and “spinning”, and so on. This reduces the number
of events to 53 for both input events and output events (Fig. 1). We also
summarize 11 input electronic components and 8 output electronic
components that commonly used in the students’ reports (Fig. 2). This
lexical database serves as the foundation of the FritzBot implementation,
including the training of the machine-learning model for natural lan-
guage process and the solution-generation mechanism which we will
describe in details later.

3.3. Design features of FritzBot

We design FritzBot as a conversational agent that aims to facilitate
circuit construction and coding for novice users. Considering the prob-
lems that may be encountered by novice users during a physical-
computing task (Mellisy et al., 2016; Waterhouse, 2016), such as
component selection, wiring, and programming, we identify a list of
design features that need to be reflected in FritzBot.

Solution recommendation Previous works (Mellisy et al., 2016;
Waterhouse, 2016) suggest that users mostly encounter the problems of
selecting correct components, designing circuit, and composing the
microcontroller programs. Therefore, we design FritzBot to generate the
schematic of a Arduino-based circuit and code with the input and the
output components based on the causal relationship extracted from the
user’s input sentence. Meanwhile, FritzBot will also generate the textual
responses with a pre-defined format to explain the generated solution.

In addition, we support error correction. If users’ input contains a
specific component (e.g “if the distance detected by the ultrasonic sensor...
”), FritzBot will detect the component phrase in the sentence and check
the correspondence between the user-mentioned sensor and the
extracted event by checking the lexical circuit-event database. If user
mentioned the wrong component (e.g. “if the distance detected by the
infrared sensor... ”), FritzBot will retrieve and suggest the correct one
(“ultrasonic sensor”) to achieve the desired goal (“detect the distance”).

Fig. 2. Circuit components that are commonly used by the students.

T. Chen et al.

International Journal of Human - Computer Studies 155 (2021) 102699

6

Event customization FritzBot allows users to customize the levels/
parameters of the detected input/output events. For a detected event, if
there is no adverb or adjective detected in the user-input sentence,
FritzBot will ask user to textually parameterize the event through text
response. In FritzBot, we allow users to define the event attributes for
each event (e.g. adjust the brightness for a light as “very bright” or
“dim”, define a distance threshold as “closed” or “far”, etc.)

Step-by-step construction guidelines Another problem commonly
encountered by users is mis-wiring (Waterhouse, 2016). We design
FritzBot to generate the wiring guidelines in the format of multiple steps.
We also allow users to track back to any step if it is necessary.

Solution restoration FritzBot allows the user to restore to the previous
generated solution if he/she is not satisfied with the current one.

Components dictionary For the educational purpose, we design
FritzBot to support natural-language question/query-based interaction
on the usage of components. FritzBot is able to take questions like “Can
you tell me how to detect the distance?”. It will search from the database,
retrieve the component “ultrasonic sensor” correlated to the detected
event “distance”, and generate a template circuit and code of that
particular component. If a user is curious about how to use a component,
he/she could select that component’s icon in the Fritzing interface, and
enter his/her question (e.g. “How to use it”). FritzBot will provide the

template circuit and code, with predefined textual responses.
The implementation of the features above will be described in details

in Section 5.

4. System walk-through

In this section, we will demonstrate the main functions of FritzBot
with an running example. Alan is a bachelor student majored in design.
He would like to build a smart robot that will react to different human
activities as follow: 1) the robot will sing a song loudly when there is
someone getting close to it; 2) it will wave its hand and blink its eyes
while being touched; 3) it will run away if someone is shouting at it.
After formulating his design idea, Alan starts to create a physical-
computing prototype with FritzBot.

Once Alan enters that he would like to make a robot, FritzBot replies
him to ask for more details about the robot (Fig. 3a). To describe the first
function, Alan enters “The robot will sing a song when we get close to it”.
After a few seconds of data processing, FritzBot generates a semi-
completed system shown in the canvas. In addition, FritzBot asks Alan
for more detailed parameters for the “sing” event (Fig. 3a). Alan re-
sponds with “I want the robot to sing loudly”, and FritzBot refreshes the
generated system in the canvas (Fig. 3b). Then Alan starts to work on the

Fig. 3. System walk-through.

T. Chen et al.

International Journal of Human - Computer Studies 155 (2021) 102699

7

second function, by telling FritzBot “I want the robot to wave its hand and
blink its eyes when I touch it”. FritzBot suggests to use a servo motor and
LED for the wave event and the blink event respectively. FritzBot also
asks Alan how many LED he would like (Fig. 3c). Alan replies with “The
robot has two eyes”. FritzBot then responds with a system containing two
LEDs (Fig. 3d).

Lastly, Alan enters “And if I shout at it, it will run away”. FritzBot tells
Alan that he should use a microphone to detect the “shout at” event and
use DC motors for “run away”. FritzBot then asks Alan for the quantity of
DC motor (Fig. 3e). Alan decides that the robot should have two wheels,
and enters “I want two DC motors”. FritzBot replies with a completed
system (Fig. 3g). Alan then opens the construction-steps window, and
follows the instructions to build the circuit step by step (Fig. 3g top-
middle). He can track back to any previous step for a clearer view of
wires. After finishing the circuit, he then connects the Arduino UNO to
his laptop, navigates to the code view, and uploads the code (Fig. 3g
bottom).

After prototyping the robot, Alan wants to add one more function to
the robot. He would like the robot to know if there is people shaking its
hand. He is trying to do that by himself, but he don’t know how to detect
the “shaking” action. He asks FritzBot: “Can you tell me how to detect
‘shaking’?”. FritzBot replies that an IMU is suggested for detecting
“shaking” and shows a sample circuit (Fig. 3f). Alan is satisfied with the
response, and starts to explore the physical-computing system by
himself.

While existing physical-computing prototyping platforms (e.g. Cir-
cuito.io, 2019) could also provide the wiring solutions for the electrical
components used in the example above, Alan may still encounter diffi-
culties on deciding what components he should use at the very begin-
ning. For example, Alan may not know which sensor to be used to detect
the event of “getting close to the robot”. Thus, he may need to search on
the Internet or go through the course materials. After finding the correct
sensor to use, he need to again check the textbook or online example
projects for the sample code to drive the sensor, and integrate the sample
code into his own project. Alan needs to repeat this process of searching
and integrating for all the other functions of his idea, and this whole
process could be time-consuming. Using FritzBot, he could ask
high-level questions specifically related to the project, and save time for
the creative ideation process.

5. System Implementation

The current prototype of FritzBot is implemented as a plug-in of
Fritzing (Knörig et al., 2009). Fig. 4 depicts the system overview of
FritzBot. FritzBot consists of three parts: (1) A neural network to extract

the cause/input and the effect/output events from a sentence input by
the user; (2) A back-end system to process the extracted events and
retrieve the corresponding components; and (3) a front-end user inter-
face for receiving inputs and showing outputs.

5.1. Named-entity recognition

The core feature of FritzBot is to extract the input event and output
event in a sentence for details. For this purpose, we train a BiLSTM-CRF-
based neural network for named-entity recognition based on our
dataset.

Dataset preparation As discussed before, we invited an English teacher
to label the cause and the effect terms in the 154 sentences collected
from the student reports. The teacher is instructed to select verbs prior to
nouns to represent the cause/effect events. We do this mainly because of
our observation that in most cases, a verb could better represent the
event with a lower ambiguity compared to a noun, as shown in the
entropy values in Fig. 1. However, a few cases may only contain nouns to
represent the events. For instance, for a sentence like “The light and music
will become weird and spooky when another sensor has sensed someone
passes through.”, we instruct the English teacher to label the noun “light”
and “music” for the output events and the verb “passes through” for the
input event. After labeling, we invited two undergraduate students
majored in English to rephrase the sentence for data augmentation,
expanding the dataset to 634 sentences.

BiLSTM-CRF model In order to label the input and the output entities
from a sentence which is modeled as a list of sequential data (i.e., a
sequence of words), we implement a named-entity recognition algo-
rithm for sentence processing. Similar to the existing works (Huang
et al., 2015; Lample et al., 2016), we build a BiLSTM-CRF model to label
entities in a sequence of words (i.e. a sentence). In FritzBot, We imple-
ment the BiLSTM model as follow:

it = σ(Wxixt +Whiht− 1 +Wcict− 1 + bi) (2)

ft = σ
(
Wxf xt +Whf ht− 1 +Wcf ct− 1 + bf

)
(3)

ct = ftct− 1 + ittanh(Wxcxt +Whcht− 1 + bc) (4)

ot = σ(Wxoxt +Whoht− 1 +Wcoct + bo) (5)

ht = ottanh(ct) (6)

where σ is the sigmoid function, i, f , c and o are input gate, forget gate,
cell state, and output gate respectively. The weight matrix subscripts
have the meaning as the name indicates. For example, Whi denote the

Fig. 4. FritzBot system overview. The input
sentence was first uploaded to the Dialogflow
server for intent recognition. If the sentence is
describing a causal logic (red arrow), it will be
pass to a BiLSTM-CRF network (green block) for
input and output events recognition before
retrieving components from the lexical circuit
database and the attributes recognition process
(light blue block). FritzBot will then check
current system completeness and generate cir-
cuit preview, code, and responses (gray block).
Yellow arrow indicates the workflow if the user
is asking FritBot for component usage or
component selection. If the user is answering
FritzBot’s question, it will be recognized as
other intents (green arrow). (For interpretation
of the references to color in this figure legend,
the reader is referred to the web version of this
article.)

T. Chen et al.

International Journal of Human - Computer Studies 155 (2021) 102699

8

weight matrix for computing input gate contributing from the hidden
vector. Wxf denotes the weight matrix for computing forget gate
contributing from x, etc. b denotes the bias for each gate. ht is the hidden
vector that output at each time step and passing to the next LSTM cell.
Instead of using a single direction LSTM, we implement a bi-directional
LSTM (BiLSTM) (Schuster and Paliwal, 1997), which have been proved
to perform better in sentence named-entity recognition task (Huang
et al., 2015). For a given sentence X = (x1, x2, x3...xn) containing a
sequence of n words, each word is represented as a d-dimensional
feature vector. We compute the feature vector by concatenating the
vector of Part-of-Speech (POS) tags (Tomberlin, 2003; Toutanova et al.,
2003) and a word vector computed by a pre-trained BERT model
(Devlin et al., 2018a). Specifically, we generate the POS tags using the
NLTK toolkit (Loper and Bird, 2002), in the format of a 35-dimensional
vector. The pre-trained BERT model outputs a word-embedding vector
of length 512. Therefore, the whole feature vector is 547 dimensional (i.
e., d = 547). The BiLSTM computes each word vector sequentially from

left to right and output a representation feature vector h
→

t for word xt.
Since the information in a sentence from both past (previous few words)
and future (next few words) are both useful for sequential tagging, we

compute another feature vector h
←

t from right to left of the sentence for
word xt. The final output feature vector of the BiLSTM at word xt would
be the concatenation of the left and the right representation ht =

[h
→

t ; h
←

t].
The input and the output events/entities in a sentence is highly

related to their neighbor words (i.e. when, if, before, etc.). To encode the
neighbor tag feature in predicting the current tag, we implement a CRF
model (Lafferty et al., 2001) on top of the BiLSTM output to select the
best predicted sequence. We follow the same pipeline proposed by
Lample et al. (2016) which was proved to perform well on named-entity
recognition task. For an input sequence to the network X = (x1, x2, x3…
xn) and a sequence of prediction Y = (y1,y2,y3…yn), we define its score
to be:

score(X,Y) =
∑n

i=0
Ayiyi+1 +

∑n

i=1
hi,yi (7)

where A is the transition matrix. Specifically, Aij represent the possibility
of the transition from tag i to tag j. A is a trainable parameter in the CRF
model. During training, we initialize it as an all-zero matrix. We
compute the SoftMax possibility of the target sequence Y as follow:

P(Y|X) =
escore(X,Y)

∑

Ỹ∈YX
escore(X,̃Y)

(8)

where YX represents all possible sequences. Ỹ denotes every individual
sequence during the iteration. During training, we maximize the log-
likelihood of the ground truth tag sequence:

log(P(Y|X)) = score(X, Y) − log

⎛

⎝
∑

Ỹ∈YX

escore(X,̃Y)

⎞

⎠ (9)

While predicting, we choose a output sequence that have a maximum
score computed by:

Y∗ = argmax
Ỹ∈YX

s
(

X, Ỹ
)

(10)

The aforementioned algorithm was implemented using Python 3.7.2
with TensorFlow 1.13.1 framework.

Training We split our dataset into the training set (507 sentences), the
validation set (64 sentences), and the test set (63 sentences). We train
our model on a desktop with one GTX 1080 Ti NVIDIA GPU with 32GB
memory and one Intel i7-8700 CPU. We use a Adam optimiser (Kingma

and Ba, 2014) (β1 = 0.9, β2 = 0.999) with learning rate of 10− 5 to
optimise the model. During training, we apply the dropout technique
(Srivastava et al., 2014) with dropout rate 0.5 to avoid over-fitting.

Performance We conducted an ablation evaluation on the perfor-
mance of our BiLSTM-CRF model. Table 2 shows the performance under
different hyper-parameters on the test set, where the highest accuracy
occurs when using a 4-layers BiLSTM-CRF model with LSTM block in
size 128. Furthermore, we compared the chosen BiLSTM-CRF structure
with the BERT model (Devlin et al., 2018b) which is commonly applied
for natural language processing, including named-entity recognition (Li
et al., 2020). We configured the BERT model with the similar hyper-
parameter (i.e. maximum length of sequence) as the chosen BiLSTM-CRF
structure. The comparison result suggested that our BiLSTM-CRF model
could achieve a better testing accuracy upon our dataset (BiLSTM-CRF:
92.46% vs. BERT: 89.57%).

5.2. Circuit and code generation

For each extracted phrase from the user-input sentences, FritzBot
retrieves the most similar phrase (measured by the word distance of
WordNet Miller, 1998) from the lexical circuit-event database and ob-
tains the corresponding electronic components. For ambiguous events,
the system checks the similarity between its object and the phrases in the
database until the most similar and the least ambiguous event is found.
That is, if an ambiguous event phrase is identified in the user’s input
sentence, the system will first sort the event phrases in the lexical
database based on their word distances towards the object of the
ambiguous phrase from smallest to largest, then the system will check
the sorted list from the beginning to find the first phrase with the
Shannon Entropy smaller than 0.5 (i.e. non-ambiguous event) as the
final identified event for component retrieval. For each event, the system
also checks its dependent adverb and adjective by using the algorithm of
Part-of-Speech (POS) Tagging (Toutanova et al., 2003), to obtain the
attribute of that event. If the system couldn’t find any adverb or adjec-
tive for the event attributes in the input sentence, it will respond with a
question to ask the user to suggest an attribute for the event. Given the
retrieved electronic components, the system generates the correspond-
ing circuit with a optimized A∗ search algorithm (Hart et al., 1968) to
manage Arudino pins, dynamically distributes and wires all electronic
components on the canvas to reduce overlapping. The wiring rule for
each electronic component follows its tutorial in the physical-computing
course which we create the lexical database upon. Each wiring
connection is stored as an individual element in a stack structure for the
function of step-by-step construction guideline.

The code is generated in a object-oriented manner based on the
electronic components and their attributes. We predefined several
commonly used attributes for each component according to the
physical-computing course syllabus. For instance, for LED, we allow user
to define its brightness in three level (i.e. low, medium, and high) with
five lighting pattern (i.e. turn on/off, blink, breathe, brighter, and
dimmer). All available attributes for each component are represented as
a .json file for the code generating algorithm. All the generated circuits
and code are stored in a large stack structure for potential solution
restoration by the user.

5.3. Components dictionary and error correction

The lexical database is used as the components dictionary, to allow
the user to enquire the usage of a particular electronic component using
the predefined question formats (i.e., “Can you tell me how to <perform a
certain event>?”, and “How to use it” with a component selection in the
Fritzing GUI). With the extracted event/component, FritzBot will
retrieve and display the template circuit and code associated in the
database.

In the reports, we observed that some students tended to describe the
system function along with a specific electronic component if they have

T. Chen et al.

International Journal of Human - Computer Studies 155 (2021) 102699

9

some prior knowledge. However, the components that the users pro-
vided may not always be correct. For example, the user may say “If I use
an infrared sensor to detect distance... ” which is not correct. In this case,
FritzBot performs the error-correction feature with two steps. First, if a
circuit component is detected in the user’s input, FritzBot will first
search for the corresponding event in the same input sentence based on
the universal within-sentence dependencies (Nivre et al., 2016)
computed by the StanfordNLP toolkit (Qi et al., 2019). Take the afore-
mentioned sentence as example, the event “distance” will be detected in
the user input with the component “infrared sensor”. Second, FritzBot
will then search the existence of the particular event-component map-
ping in the lexical database. If the mapping does not exist, FritzBot will
identify that the user’s input may potentially contain an error, and
suggest the correct component (i.e. “ultrasonic sensor” for detecting
“distance”). In this case, FritzBot will respond with a pre-defined tem-
plate, “You should use <ultrasonic sensor>instead of <infrared sensor>to
detect <distance>”, and generate a corrected circuit result.

5.4. Natural-language output

While FritzBot mainly focuses on circuit and code generation for a
physical-computing task, it also generates natural-language feedback in
order to facilitate users’ understanding of the generated circuit. There
are two types of natural-language feedback: the response and the follow-
up question. For the natural-language response, we predefined a set of
sentence templates for different types of responses (i.e. the confirmation
response and the error-correction response). The confirmation response
is defined as “According to your description <e>, I suggest to use <c>as
the input/output component.” where e is the extracted user input event
and c is the corresponding retrieved electronic component. It would be
triggered while FritzBot is generating the circuit solution or setting the
circuit attributes (see section 5.2). The error-correction response (“You
should use <c1>instead of <c2>to detect <e>.”) is for informing the
user that there may be a wrong electronic component for his/her desired
event (see section 5.3), where c1 is the correct component, c2 is the user-
inputted component, and e is the extracted event.

FritzBot treats a circuit that contains at least one input event and one
output event along with their attributes as a complete system. FritzBot
will check the completeness of the system during the user’s prototyping
process. If the system is lacking any event attribute, FritzBot will
generate a follow-up question to ask the user for providing a corre-
sponding attribute for the event. We predefined several follow up
question templates to increase the language diversity. Specifically,
FritzBot will ask “How many <c>would you like to have?” to get the
quantity of the retrieved component c, or “How would you like the input/
output <e>to be?” to ask for the attribute of the corresponding input/
output event e, or “It seems like that your system is missing the input/output
part. Would you like to provide more information?” if any input/output
event is missing.

5.5. Front-end user interface

We implemented the front-end interface of FritzBot as a plug-in of
Fritzing (Knörig et al., 2009) using C++ with Qt framework. The
interface communicate with the back-end system (implemented using
Python 3.7.2) through TCP/IP protocol.

6. User study

We conducted a between-subject user study to assess how novice will
create a physical computing system using FritzBot, particularly to
investigate if FritzBot can significantly reduce the time and the effort for
physical-computing system construction.

6.1. Participants

Twenty-four participants (all design-majored students from a local
university, 12 males and 12 females, averagely aging 22.1 years old with
SD of 2.50) were involved in our study. The participants are randomly
and evenly assigned to three groups: 1) Arduino Group (AG): using
Arduino IDE only, 4 males and 4 females, Age Mean = 22.9, 2) Circuito
Group (CG): using Circuito (Circuito.io, 2019) and Arduino IDE, 6 males
and 2 females, Age Mean = 21.8, and 3) FritzBot Group (FG): using
FritzBot, 2 males and 6 females, Age Mean = 21.1. The native Arduino
IDE was chosen as the basedline. While there are existing research
prototypes on facilitating physical-computing tasks, Circuito was chosen
for comparison because it, as an commercial product, is widely available
and used within the community. In addition, the existing research pro-
totypes are not available with enough details for reproduction. There-
fore, we adopt the evaluation strategy followed by other related works
(Anderson et al., 2017; Kim et al., 2019) to compare our solution with
the tools available in the market. All the three groups are provided with
sufficient electronic components to finish the task, and allowed to search
relevant knowledge on the Internet. We also include some distractor
components in the component list to increase the level of confusion. We
also provide the participant a set of digital documents on the basic
introduction of electronic component and Arduino. The provided doc-
uments are compiled by a physical-computing teacher who has been
teaching the related courses in a local design-related undergraduate
program for five years.

Prior to the study, the participants rate their electronic experience
and programming experience at the level of “Never Try” − 1, “Beginner”
− 2, “Intermediate” − 3, or “Expert” − 4. As the Shapiro–Wilk test
shows a significant departure of the participant’s self-rated technical
skills from the normal distribution, we adopted the non-parametric
statistical analysis on these data. Kruskal Wallis Test indicates there
was no different among the three groups in terms of electronic experi-
ence (AG: 2.13, CG: 2.25, FG: 2.00, H(2) = 1.208, p = 0.69) and pro-
gramming experience (AG: 2.75, CG: 2.5, FG: 2.63, H(2) = 5.565, p =

0.06). Genderwise, Mann-Whitney U Tests showed no significant

Table 2
Performance of the BiLSTM-CRF network with different hyper-parameters.

T. Chen et al.

International Journal of Human - Computer Studies 155 (2021) 102699

10

difference between females and males in terms of the technical back-
ground (Electronics: female − 1.36, male − 1.38, Z = 0.027, p = 0.978;
Programming: female − 1.81, male − 1.92, Z = 0.057, p = 0.919).

6.2. Task

During the user study, users were asked to finish a “smart baton”
project. The “smart baton” has the follow function: with the follow
features/functions: 1) it will start vibrating while being presses; 2) a
light on it will light up while being shaken; 3) it will play music loudly
while being pressed and shaken at the same time. This task is derived
from the physical-computing curriculum in the local university where
we retrieved the student reports. Based on the physical-computing
curriculum in the participants’ university, this task is of moderate dif-
ficulty for a 2nd-year design/art-majored student, and it can be
completed in under an hour for novice using 5 electronic components,
including 2 input components (i.e. a button and an accelerometer) and 3
output components (i.e. an LED, a vibration motor, and a speaker/
buzzer) (Fig. 5).

6.3. Procedure

Before the main task, the participant was given a brief tutorial of
basic electronics and Arduino, including the functions of common
electronic components, the basic usage of Breadboard, and the basic
logic of Arduino programming. Depending on the participant’s group,
they were also given a brief instruction about FritzBot or Circuito.io or
Arduino IDE.

After the instruction, the participant was given a video (Fig. 6)
demonstrating all functions of the task system. The video sequentially
shows three functions with each of them being repeated three times. To
avoid bias, we hide all electronic components for the implementation in
the video, only showing the final input and output. For output that could
not be visualized (e.g. vibration), we show a icon with animation. We do
not provide any textual description in the video. After watching the
video, the participant needs to describe each function that he/she saw
from the video to ensure that he/she clearly understood the task. The
participant was given 45 min to finish the task. With his/her permission,
we recorded each participant’s time spent and level of completion. We
also recorded the screen operation of each participant, to estimate the
time for software usage (e.g., circuit design and coding), information
searching through the web browsers and the provided materials, and
physical circuit implementation. After the experiment, participants are
required to answer a usability questionnaire on their impressions (1 -
strongly disagree, 7 - strongly agree) of the system (i.e. Arduino IDE,
Circuito.io, and FritzBot) and perceived workload. Following previous
work on creative toolkit evaluation (Chen et al., 2019; Kazi et al., 2011;
Zhu and Zhao, 2013), we choose the questionnaire items from the USE
questionnaire (Lund, 2001) for the user-experience and the usability
evaluation, and the NASA-TLX questionnaire (Hart and Staveland,
1988) for the workload evaluation.

6.4. Results

In this section, we discuss the analysis on the time-completion time
and the user experience across the three different groups. As the

Shapiro-Wilk test shows a significant departure of the data from the
normal distribution, we adopted the non-parametric statistical analysis
for the participants’ task performance and their responses to the
questionnaire.

6.4.1. Task-completion time and rate
In overall, Mann-Whitney U Test doesn’t reveal any significant dif-

ference between the female and the male participants in terms of the
task-completion time. All FG participants successfully completed the
task, while there is only one AG participant and one CG participant
completed the task. Therefore, we treat the time spent by the other AG
and CG participants as 45 min which is the set length of the task. The
Kruskal Wallis Test shows a significant effect of the grouping on the task
completion time (H(2) = 18.27, p < 0.0005). The pair-wise Mann-
Whitney U Tests show that the FG participants spent significantly
shorter time (Mean = 26.5 min, SD = 2.96) than the AG participants
(Mean = 44.3 min, SD = 0.75, Z = 3.40, p < 0.005) and the CG par-
ticipants (Mean = 44.4 min, SD = 1.65, Z = 3.46, p < 0.005). Fig. 7
shows the time spent on different functions of the three groups. We treat
each function as a subtask to represent the observable milestones. As
most AG and CG participants couldn’t complete the third functions, we
mainly compare the completion time for the first two functions/sub-
tasks. Kruskal Wallis Test shows a significant effect of the grouping on
the completion time for the first and the second functions (Func.1: H(2)
= 6.36, p < 0.05; Func.2: H(2) = 16.27, p < 0.005). Overall, the FG
participants completed the first two functions significantly faster than
the participants in the other two groups. The Kruskal Wallis Test also
shows a significant difference among the groups in terms of task-
completion rate (H(2) = 13.69, p < 0.005. FG: 100%, CG: 62.6%, AG:
54.1%).

We further break down the task completion time into three main
parts: 1) software usage (e.g., circuit design and coding), 2) physical
circuit implementation, and 3) information searching (e.g., web
browsing and referring to the provided material). Specifically for the
information-searching time, we focus on the time duration for a user
using other tools, such as web browsers and e-book readers, to search
relevant physical-computing knowledge. As we didn’t observe any FG
participants switching to other software during the experiments, we set
their information-searching time as 0. Fig. 8 shows the time spent on
different activities of the three groups.

The Kruskal Wallis Test shows that there is a significant effect of the
grouping on the time for information searching (H(2) = 17.44,
p < 0.0005) and physical circuit implementation (H(2) = 10.82,
p < 0.005), but not software usage (H(2) = 3.40, p = 0.183). As there is
no FG participants switching to other software for information search-
ing, it is obvious that the time for information searching using other
tools in this group is significantly shorter than the other two groups. The
pair-wise Mann-Whitney Tests also show that the FG participants spent
significantly shorter time on circuit implementation (Mean = 13.2 min,
SD = 7.78) than the AG participants (Mean = 24.9 min, SD = 3.05, Z =

2.84,p < 0.005) and the CG participants (Mean = 21.3 min, SD = 5.04,
Z = 2.10, p < 0.05). There was no difference between AG and CG in
terms of the time for information searching and circuit implementation.
In addition, there was no significantly difference on the software-usage
time across the three groups (AG: Mean = 11.4 min, SD = 2.75; CG:
Mean = 11.4 min, SD = 5.78; FG: Mean = 14.9 min, SD = 4.20).

Fig. 5. User-study task. Left: The circuit plan; Middle: The code; Right: The completed physical circuit.

T. Chen et al.

International Journal of Human - Computer Studies 155 (2021) 102699

11

6.4.2. Usability and user engagement
The Kruskal Wallis Tests show that the grouping condition signifi-

cantly affects the participants’ ratings on ease to learn (H(2) = 10.73, p
< 0.005), ease to use (H(2) = 7.13, p < 0.05), ease to correct mistake
(H(2) = 6.92, p < 0.05), system consistency (H(2) = 10.11, p < 0.05),
usefulness on creating physical-computing system (H(2) = 13.29, p
< 0.005), and helpfulness on learning physical-computing knowledge
(H(2) = 8.53, p < 0.05). One user (FG_U3) told us after the experiment
“It is great to know that the accelerometer could be used to detect shaking in
such a high accuracy”. Regarding the user engagement (i.e., fun, enjoy-
ment, and willingness to use in the future, etc.), the Kruskal Wallis Tests
also show a significant difference across the three groups (Fun: H(2) =

11.28, p < 0.005; Enjoyment: H(2) = 10.37, p < 0.05; Willingness of
Future Use: H(2) = 6.12, p < 0.05; Willingness of Recommendation:
H(2) = 8.22, p < 0.05).

Pair-wise comparison using Mann-Whitney U Tests (see Table 3 for
details) show that compared to Circuito and Arduino IDE, FritzBot is
rated significantly higher score in the ease to learn, the feature inte-
gration, the system consistency, the confident of using, the support on
rapid prototyping, the fun and the joy of use, and the willingness for
future use. In addition, FritzBot is rated significantly easier to use and
correct mistakes, more useful for rapid-prototyping and learning

physical computing, and more supportive for productivity and creativity
than Circuito, while there is no significant difference between FritzBot
and Arduino IDE in these aspects.

6.4.3. Perceived workload
The average total NASA-TLX score of the experimental group is

20.88/60 (SD = 2.08), and the average total score of the controlled
group is 31.63/60 (SD = 1.30). Fig. 9 shows the NASA-TLX results.

The Kruskal Wallis Tests show that the grouping condition signifi-
cantly affects the user-perceived mental demand (H(2) = 8.92,
p < 0.05), temporal demand (H(2) = 9.01, p < 0.05), effort (H(2) =

10.9,p < 0.005), and frustration (H(2) = 11.4,p < 0.005). The pair-wise
Mann-Whitney U Tests show that compared to the FG participants, the
CG participants rate significantly higher in terms of mental demand
(U = 7.00, p < 0.01), temporal demand (U = 11.50, p < 0.05), overall
effort (U = 3.50, p < 0.01), and frustration (U = 0.50, p = 0.00).
Similarly, the AG participants rated higher mental demand (U = 9.50,
p < 0.05), temporal demand (U = 5, p < 0.005), and effort (U = 8.00,
p < 0.05) than to the FG participants. One AG participant commented
that “It is tiring to search how to use the components and make the
circuit online”. As she rated herself inexperienced in physical
computing, she had to follow the online information closely, and

Fig. 6. Screenshot of the video demonstration, indicating three tasks for the user study.

Fig. 7. Time spent on different subtasks/functions by AG, CG, and FG participants. The horizontal axis indicates the time in minutes.

T. Chen et al.

International Journal of Human - Computer Studies 155 (2021) 102699

12

frequently switch between the physical circuit and the web browser to
make the circuit.

The FG participants perceived better performance than the CG par-
ticipants (U = 11.50, p < 0.05). There are two CG participants
complaint that the circuits in Circuito are too complicated to follow.
Two other CG (CG_U1 and CG_U3) participants mentioned that they
could figure out the logic but it is very difficult for them to program it.

7. Discussion

Overall, our study demonstrated that with FritzBot, users with
limited technical knowledge are able to finish a functional physical-
computing system efficiently.

It is noted that the information-searching time for the FG participants
were estimated as 0, since there was no one in this group switching to
other tools for searching. This could be because the information-
searching activities can be done within the FritzBot interface by chat-
ting. This assumption echos with the result that FritzBot is rated
significantly better integrated that Circuito and Arduino IDE. This also
lead to slightly longer software-usage time for the FG participants than
the other two groups (FG: Mean = 14.56 min, SD = 4.20; CG: Mean =
11.13 min, SD = 5.78; AG: Mean = 10.87 min, SD = 2.75). We also
observed that the participants in the other two groups frequently
switched across the design/coding software, the web browser, and the
provided documents. The tool-switching behaviors may increase the
task-completion time.

Furthermore, the circuit-implementation time for FG is significantly
shorter than the other two groups (FG: Mean = 11.94 min, SD = 7.78;
CG: Mean = 20.50 min, SD = 5.04; AG: Mean = 25.14 min, SD = 3.05).
For the AG participants, we observe that they often switch back and
forth between the process of physical circuit making and online infor-
mation searching. Circuito could automatically generate the circuit
design once the participant decides which component to use. The
automation may reduce the need of searching how to connect a specific
component, and reduce the circuit-implementation time. On the other
hand, we observe that seven CG participants still conduct extensive
online and document search for which component to use before gener-
ating the circuit. In contrast, we observe that all the FG participants
perform a clear step-by-step pattern of task completion: Step 1) Chatting
with FritzBot for solution, Step 2) Constructing the physical circuit, and
Step 3) Upload the generated code, and there is very few switching
behaviors back and forth across the steps.

The support of natural-language input received positive comments
from the EG participants. One participant (FG_U6) commented very
excitingly after she finish the first function: “I definitely cannot wait to
recommend this system to my friends!”. There are two participants (FG_U4
& FG_U5) having similar comments on “I will immediately purchase this
system when it is available online.”. They all found it intuitive to describe
their ideas in natural language because they do not need to care what
components they should use and how to use them. We observe that four
CG participants were struggling on choosing the accelerometer for
detecting shaking. In addition, three CG participants hesitated on using
vibration motor to generate vibration. All the participants search for the
usage of accelerometer on the Internet. There is one CG participant
(CG_U4) attempting to use DC motor to generate vibration, and he spent
lots of time on searching for corresponding solutions online. In addition,
FritzBot can robustly handle a variety of natural-language descriptions.
During the user study, different users used different language patterns
and phrases to describe a causal-effect relation and circuit events.
Table 4 shows the common language patterns used by the participants
and successfully processed by FritzBot.

Similar to Anderson et al. (2017), we observe that four FG partici-
pants did not use the step-by-step function to finish the circuit. For those
who used this feature, two followed the generated instructions to
construct the whole circuit (FG_U5 & FG_U2), and another one referred
to the step-by-step descriptions to identify the pins of the accelerometer
(FG_U1). Participants who used the step-by-step function commented
that the this function is useful. However, there is one participant
(FG_U4) found that the circuit diagram is clear enough for her to follow.
She also mentioned it would be better if the step-by-step instructions
could “highlight the wires that she need to connect”. In contrast, we observe
that the CG participants found that most of the online materials do not
provide a clear circuit diagram. They needed to interpret the textual
instructions online or the photo of the finished circuit to construct the
circuit, which is more challenging for them.

Although 7 of 8 FG participants could finish the task smoothly,
FG_U6 was suffering from the error-recognition problem. His input
contain some misspelling words and grammar errors, which could not be
correctly recognized by FritzBot. During constructing Function#3, he
did not include the description such as “at the same time” or “simulta-
neously”, to tell FritzBot that two input events will occur together. In
this case, FritzBot failed to generate the code that listens for two input
pins simultaneously.

Fig. 8. Time spent on different activities by AG, CG, and FG participants. The horizontal axis indicates the time in minutes.

T. Chen et al.

International Journal of Human - Computer Studies 155 (2021) 102699

13

8. Limitations and future work

During the user study, we identified several limitations for future
improvement. Firstly, the performance of the BiLSTM-CRF network
heavily relies on the scale of the training dataset. With our dataset
derived from 152 student reports, our current prototype can correctly
process most of the short causal-effect sentences. However, it sometimes
fails on some complex and long sentences due to the lack of such training
data, as our current dataset mainly contains short causal sentences. In
addition, the current dataset only contains the textual description from
one single ethic group. As users from different language background
may describe their ideas differently, the current prototype may not be

able to successfully analyze the input by another ethic group. The cur-
rent BiLSTM-CRF model somehow relies on certain specific sentence
features. For example, FG_U6’s input doesn’t include phrases such as “at
the same time” or “simultaneously”, making it ambiguous for the system
to correctly identify that the two input events will happen at the same
time. As a proof of concept, FritzBot current support 19 electronic
components (Fig. 2). The number of supported components and circuit
event could be extended by adding more entities in our database,
without the need of re-training the BiLSTM-CRF model. Experts in
physical computing, such as instructors, can also customize and expand
the lexical database by inputting their own data. We will also collect
more data from larger online and offline physical-computing commu-
nities for more training data in the future, to increase the generaliz-
ability of the system. For the non-physical-computing domain that can
be described using the cause-effect relationship, the FritzBot approach
could be adopted by constructing the new lexical database and training
the causality-prediction model with the database from that particular
domain.

Secondly, we are aware of various emerging deep-learning models
for natural language processing (NLP), specifically for name-entity
recognition (Lothritz et al., 2020), and they may achieve better perfor-
mance then the BiLSTM-CRF model which is currently used in FritzBot.
To this end, the BiLSTM-CRF model is designed as one replaceable
module in FritzBot which takes the user’s sentence as input, and labels
the input and the output events for the later process. Therefore, the
future researchers can replace this part with the emerging NLP models.

Thirdly, the FritzBot system currently can generate the physical-
computing systems using Arduino only. We observed that one partici-
pant (CG_U5) finished the first function (press a button trigger a vibra-
tion) without using Arduino, which dramatically reduced the
construction time and system complexity. In the future version, FritzBot
will support generate circuitry without using a micro-controller if
possible.

Fourth, although we currently support user customization on event
attributes, all the available attribute options are predefined. For
example, we allow user to define the brightness of a LED, but FritzBot
will only recognizes phrases such as bright, medium, dim, and their syn-
onyms. In our further version, we will provide more space for users’
customization on the corresponding components.

Last but not the least, our user studies mainly focused on the usability
and the user engagement of FritzBot, without specific evaluation on the
long-term educational value. However, the participants also commented
on the possibility of using FritzBot in the educational settings. For
instance, FG_U2 commented that “I can learn how to use different sensors
in FritzBot”. FG_U7 said, “I could have been more interested in physical
computing if I could learn this course with FritzBot”. Automatic content
generation has been widely applied in the design of intelligent tutoring
systems, such as code generation for teaching software engineering
(Khmelevsky et al., 2012) and algorithm design (Gavilanes et al., 2009),
circuit generation for introductory electronic courses (Beg, 2013; Mac-
indoe et al., 2014), and so on, to enhance the student engagement in

Table 3
Between-group comparison on the questionnaire ratings. The numbers within
the brackets are the standard deviations. “>” indicates significant different (p
< 0.05), and “~” indicates no significant difference, for Mann-Whitney Test.

Questionnaire item FritzBot
mean

Arduino
mean

CircuitO
mean

Between-group
comparison

It is easy for me to learn
to use this toolkit.

6.00
(0.53)

4.00
(1.69)

3.50
(1.31)

FritzBot >
Arduino
∼Circuito

I think the system was
easy to use.

5.88
(0.35)

4.75
(2.25)

3.63
(1.41)

FritzBot
∼Arduino,
FritzBot >
Circuito

I found the various
functions in this
system were well
integrated.

6.13
(0.35)

4.75
(1.75)

3.63
(0.74)

FritzBot >
Arduino >
Circuito

I thought there was too
much inconsistency in
this system.

2.13
(0.99)

2.88
(1.13)

3.88
(0.35)

Circuito
∼Arduino >
FritzBot

I found the system very
cumbersome to use.

1.75
(0.71)

3.38
(1.85)

3.50
(0.53)

Circuito
∼Arduino >
FritzBot

I felt very confident
using the system.

6.13
(0.64)

3.75
(1.98)

3.63
(0.92)

FritzBot >
Arduino
∼Circuito

I can recover from
wrong design easily
with this tool.

5.50
(1.07)

4.25
(1.98)

3.50
(0.76)

FritzBot
∼Arduino,
FritzBot >
Circuito

I can create physical-
computing systems
quickly using this tool.

6.75
(0.46)

4.38
(1.06)

4.00
(1.07)

FritzBot >
Arduino
∼Circuito

The tool is useful in
creating physical-
computing systems.

6.50
(0.53)

5.88
(0.83)

4.88
(0.64)

FritzBot
∼Arduino >
Circuito

This tool is useful for
helping me to learn
how to create
physical-computing
systems.

5.75
(0.71)

5.63
(1.60)

4.13
(0.99)

FritzBot
∼Arduino >
Circuito

Making physical
computing with this
tool is fun.

6.63
(0.74)

4.75
(1.67)

4.13
(1.46)

FritzBot >
Arduino
∼Circuito

I enjoy creating
physical-computing
systems using this
toolkit.

6.50
(0.76)

4.63
(1.69)

4.13
(1.36)

FritzBot >
Arduino
∼Circuito

I became creative in
physical computing
with this tool.

5.25
(0.89)

4.50
(1.60)

3.75
(1.04)

FritzBot
∼Arduino,
FritzBot >
Circuito

I became productive in
physical computing
with this tool.

6.00
(1.28)

4.88
(1.19)

4.25
(0.99)

FritzBot
∼Arduino,
FritzBot >
Circuito

I think that I would like
to use this system
frequently.

5.25
(0.53)

4.00
(1.89)

3.63
(1.04)

FritzBot >
Arduino ∼
Circuito

Fig. 9. NASA-TLX Results

T. Chen et al.

International Journal of Human - Computer Studies 155 (2021) 102699

14

learning. For math education, Kapur suggested that intelligent problem
posing with automatic solution generation prior to instruction plays a
critical role in the development of conceptual understanding (Kapur,
2018). With the loosening restriction on social distancing in the
post-pandemic era, we plan to deploy FritzBot to a large group of stu-
dents with long-term in-class teaching and learning, to further evaluate
FritzBot’s educational support on physical interface and product design.

Last but not the least, our user study involved one main task/system
tested with art and design students who are inexperienced in physical
computing. Previous research (Lo et al., 2019) shows that expert users
may have different behaviors in different physical-computing activities,
compared to inexperienced users. In the future work, we plan to conduct
more workshops of FritzBot, involving participants with different
background, to study how FritzBot with natural-language interaction
could facilitate different levels of physical-computing tasks and creative
processes.

9. Conclusion

With the support of emerging machine-learning models, we present
FritzBot, a conversational agent supporting novice users on creating
physical-computing systems through natural-language interaction. The
conversational engine of FritzBot was developed based on a BiLSTM-
CRF neural network for identifying the input events and the output
events phrase in users’ textual description of their ideas. FritzBot can
extract the causal relationship from the text, identify the input and the
output components, and generate the corresponding circuit and code
along with the construction guidelines. Our user study shows that
compared to the circuit-autocompletion software available in the com-
mercial market, FritzBot significantly shortens the time spent and the
perceived workload for novice users on tasks of physical-computing
system design and prototyping. While this initial implementation is
capable to support various circuit components and behaviours, the
concept that we present could be extended to support other hardware
platform with more data.

CRediT authorship contribution statement

Taizhou Chen: Data curation, Investigation, Formal analysis, Soft-
ware, Writing – review & editing, Visualization. Lantian Xu: Data
curation, Software, Visualization, Writing – review & editing. Kening
Zhu: Conceptualization, Funding acquisition, Methodology, Project
administration, Writing – review & editing, Supervision.

Declaration of Competing Interest

Authors declare that they have no conflict of interest.

Acknowledgement

This research was partially supported by the Young Scientists
Scheme of the National Natural Science Foundation of China (Project
No. 61907037), the Guangdong Basic and Applied Basic Research
Foundation (Project No. 2021A1515011893), the Applied Research
Grant (Project No. 9667189), and ACIM, School of Creative Media, City
University of Hong Kong..

References

2019. Arduino - Home.
Anderson, F., Grossman, T., Fitzmaurice, G., 2017. Trigger-action-circuits: leveraging

generative design to enable novices to design and build circuitry. Proceedings of the
30th Annual ACM Symposium on User Interface Software and Technology, 331–342.
10.1145/3126594.3126637.

2019. BeagleBoard.
2019. Bixby | Apps - The Official Samsung Galaxy Site.
Beg, A., 2013. Automatic generation of characterization circuits-an application in

academia. 2013 IEEE Frontiers in Education Conference (FIE). IEEE, pp. 661–664.
Boland Jr., R.J., 1979. Control, causality and information system requirements. Account.

Organ. Soc. 4 (4), 259–272.
2019. Circuit Design App for Makers- circuito.io.
Chen, T., Wu, Y.-S., Zhu, K., 2019. Duprobo: interactive robotic autocompletion of

physical block-based repetitive structure. IFIP Conference on Human-Computer
Interaction. Springer, pp. 475–495.

Coelho, J., Duarte, C., Biswas, P., Langdon, P., 2011. Developing accessible TV
applications. ASSETS’11: Proceedings of the 13th International ACM SIGACCESS
Conference on Computers and Accessibility, pp. 131–138. https://doi.org/10.1145/
2049536.2049561.

Cohen, P.R., 1992. The role of naturial language in a multimodal interface. Proceedings
of the 5th annual ACM symposium on User interface software and technology UIST
’92, pp. 143–149.

Devlin, J., Chang, M.-W., Lee, K., Toutanova, K., 2018a. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding (Mlm). arXiv:1810.04805.

Devlin, J., Chang, M.-W., Lee, K., Toutanova, K., 2018b. Bert: pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:181
0.04805.

Fernando, O.N.N., Cheok, A.D., Ranasinghe, N., Zhu, K., Edirisinghe, C., Cao, Y.Y., 2009.
Poetry mix-up: a poetry generating system for cultural communication. Proceedings
of the International Conference on Advances in Computer Enterntainment
Technology. ACM, pp. 396–399.

Gavilanes, A., Martín, P.J., Torres, R., 2009. A tool for automatic code generation from
schemas. International Conference on Computational Science. Springer, pp. 63–73.

Ha, D., Eck, D., 2017. A neural representation of sketch drawings. arXiv:1704.03477.
Hart, P.E., Nilsson, N.J., Raphael, B., 1968. A formal basis for the heuristic determination

of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4 (2), 100–107.
Hart, P.E., Nilsson, N.J., Robinson, A.E., 1972. A Causality Representation for Enriched

Robot Task Domains. Technical Report. Stanford Research Inst Menlo Park CA.
Hart, S. G., Staveland, L. E., 1988. Development of nasa-tlx (task load index): Results of

empirical and theoretical research.
Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural computation 9

(8), 1735–1780.
Huang, Y., Kaufmann, M., Aksan, E., Black, M.J., Hilliges, O., Pons-Moll, G., 2018. Deep

inertial poser: learning to reconstruct human pose from sparse inertial measurements
in real time. ACM Trans. Graph. 37 (6) https://doi.org/10.1145/3272127.3275108.

Huang, Z., Xu, W., Yu, K., 2015. Bidirectional LSTM-CRF Models for Sequence Tagginga
rXiv:1508.01991.

Iwakiri, S., Matsumoto, M., 2011. Investigation of robot behavior model to build
causality after events. 2011 IEEE/SICE International Symposium on System
Integration (SII). IEEE, pp. 1–5.

Table 4
Participants’ language usage during user study.

T. Chen et al.

http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0005
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0005
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0006
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0006
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0008
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0008
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0008
https://doi.org/10.1145/2049536.2049561
https://doi.org/10.1145/2049536.2049561
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0010
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0010
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0010
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0013
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0013
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0013
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0013
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0014
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0014
http://arxiv.org/abs/1704.03477
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0016
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0016
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0017
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0017
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0019
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0019
https://doi.org/10.1145/3272127.3275108
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1508.01991
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0022
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0022
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0022

International Journal of Human - Computer Studies 155 (2021) 102699

15

Kapur, M., 2018. Examining the preparatory effects of problem generation and solution
generation on learning from instruction. Instr. Sci. 46 (1), 61–76.

Kazi, R.H., Chua, K.C., Zhao, S., Davis, R., Low, K.-L., 2011. Sandcanvas: a multi-touch
art medium inspired by sand animation. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 1283–1292.

Khmelevsky, Y., Hains, G., Li, C., 2012. Automatic code generation within student’s
software engineering projects. Proceedings of the Seventeenth Western Canadian
Conference on Computing Education. Association for Computing Machinery, New
York, NY, USA, pp. 29–33. https://doi.org/10.1145/2247569.2247578.

Kim, Y., Choi, Y., Kang, D., Lee, M., Nam, T.-J., Bianchi, A., 2019. HeyTeddy:
conversational test-driven development for physical computing. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol. 3 (4), 1–21. https://doi.org/10.1145/3369838.

Kingma, D. P., Ba, J., 2014. Adam: a method for stochastic optimization. arXiv:
1412.6980.

Knörig, A., Wettach, R., Cohen, J., 2009. Fritzing a tool for advancing electronic
prototyping for designers, 351. 10.1145/1517664.1517735.

Kuhn, T., 2014. A survey and classification of controlled natural languages. Comput.
Linguist. 40 (1), 121–170.

Lafferty, J., McCallum, A., Pereira, F.C.N., 2001. Conditional random fields: probabilistic
models for segmenting and labeling sequence data. ICML ’01 Proceedings of the
Eighteenth International Conference on Machine Learning, 8, pp. 282–289. https://
doi.org/10.1038/nprot.2006.61. arXiv:1011.4088v1.

Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C., 2016. Neural
architectures for named entity recognition. Proceedings of the 2016 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 260–270. https://doi.org/10.18653/v1/N16-
1030. arXiv:1603.01360v3.

Laput, G., Dontcheva, M., Wilensky, G., Chang, W., Agarwala, A., Linder, J., Adar, E.,
Street, T., Street, S. S., Francisco, S., States, U., Arbor, A., States, U., 2013. PixelTone:
A Multimodal Interface for Image Editing.

Lau, T., Cerruti, J., Manzato, G., Bengualid, M., Bigham, J.P., Nichols, J., 2010.
A conversational interface to web automation. UIST 2010 - 23rd ACM Symposium on
User Interface Software and Technology, pp. 229–238. https://doi.org/10.1145/
1866029.1866067.

Li, T.J.-J., Azaria, A., Myers, B.A., 2017. Sugilite: creating multimodal smartphone
automation by demonstration. Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, pp. 6038–6049.

Li, T.J.-J., Labutov, I., Li, X.N., Zhang, X., Shi, W., Ding, W., Mitchell, T.M., Myers, B.A.,
2018. Appinite: A multi-modal interface for specifying data descriptions in
programming by demonstration using natural language instructions. 2018 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
pp. 105–114.

Li, T.J.-J., Radensky, M., Jia, J., Singarajah, K., Mitchell, T.M., Myers, B.A., 2019.
Pumice: a multi-modal agent that learns concepts and conditionals from natural
language and demonstrations. Proceedings of the 32nd Annual ACM Symposium on
User Interface Software and Technology, pp. 577–589.

Li, X., Zhang, H., Zhou, X.-H., 2020. Chinese clinical named entity recognition with
variant neural structures based on bert methods. J. Biomed. Inform. 107, 103422.

Lin, S.C., Hsu, C.H., Talamonti, W., Zhang, Y., Oney, S., Mars, J., Tang, L., 2018. ADASA:
a conversational in-vehicle digital assistant for advanced driver assistance features.
UIST 2018 - Proceedings of the 31st Annual ACM Symposium on User Interface
Software and Technology, pp. 531–542. https://doi.org/10.1145/
3242587.3242593.

Lo, J.-Y., Huang, D.-Y., Kuo, T.-S., Sun, C.-K., Gong, J., Seyed, T., Yang, X.-D., Chen, B.-
Y., 2019. AutoFritz: autocomplete for prototyping virtual breadboard circuits.
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems -
CHI ’19, pp. 1–13. https://doi.org/10.1145/3290605.3300633.

Loper, E., Bird, S., 2002. Nltk: the natural language toolkit. In Proceedings of the ACL
Workshop on Effective Tools and Methodologies for Teaching Natural Language
Processing and Computational Linguistics. Philadelphia: Association for
Computational Linguistics.

Lothritz, C., Allix, K., Veiber, L., Klein, J., Bissyande, T.F.D.A., 2020. Evaluating
pretrained transformer-based models on the task of fine-grained named entity
recognition. Proceedings of the 28th International Conference on Computational
Linguistics, pp. 3750–3760.

Lund, A.M., 2001. Measuring usability with the use questionnaire12. Usability Interface
8 (2), 3–6.

Macindoe, J., Li, J.C., et al., 2014. Automatic circuit analysis problem and solution
generation. 25th Annual Conference of the Australasian Association for Engineering
Education: Engineering the Knowledge Economy: Collaboration, Engagement &
Employability. School of Engineering & Advanced Technology, Massey University,
p. 72.

Mellisy, D.A., Buechley, L., Resnick, M., Hartmann, B., 2016. Engaging amateurs in the
design, fabrication, and assembly of electronic devices. DIS 2016 - Proceedings of the
2016 ACM Conference on Designing Interactive Systems: Fuse, pp. 1270–1281.
https://doi.org/10.1145/2901790.2901833.

Miller, G.A., 1998. WordNet: An Electronic Lexical Database. MIT Press.
Nivre, J., de Marneffe, M.-C., Ginter, F., Goldberg, Y., Hajič, J., Manning, C.D.,

McDonald, R., Petrov, S., Pyysalo, S., Silveira, N., Tsarfaty, R., Zeman, D., 2016.
Universal Dependencies v1: a multilingual treebank collection. Proceedings of the
Tenth International Conference on Language Resources and Evaluation (LREC’16).
European Language Resources Association (ELRA), Portorož, Slovenia,
pp. 1659–1666.

Qi, P., Dozat, T., Zhang, Y., Manning, C. D., 2019. Universal dependency parsing from
scratch. arXiv preprint arXiv:1901.10457.

2019. Raspberry Pi.
Rabiner, L.R., Juang, B.H., 1986. An introduction to hidden Markov models. Vis.

Ethnogr. 6 (2), 239–249. https://doi.org/10.12835/ve2017.2-0095.
2019. Scratch - Imagine, Program, Share.
Schlegel, V., Lang, B., Handschuh, S., 2019. Vajra : Step-by-step Programming with

Natural Language, 30–39.
Schuster, M., Paliwal, K. K., 1997. Bidirectional recurrent neural networks as generative

models 45 (May), 1–10. arXiv:1504.01575v2.
Shannon, C.E., 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27

(April 1928), 379–423.623–656
Srinivasan, A., Dontcheva, M., Adar, E., Walker, S., 2019. Discovering natural language

commands in multimodal interfaces, 661–672. 10.1145/3301275.3302292.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014.

Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15, 1929–1958.

Sung, E. J., Kim, K., Chung, H., You, J., 2019. Honk ? Talk !: designing driver-to-driver
communication methods for social driving. Dis19, 295–299.

2019. Tinkercad | Create 3D digital designs with online CAD.
Thanisch, P., 1995. Natural language interfaces to databases - an introduction. Nat. Lang.

Eng. 1 (1), 29–81. https://doi.org/10.1017/S135132490000005X.
Tomberlin, J.E., 2003. Feature-rich part-of-speech tagging with a cyclic dependency

network. HLT-NAACL, pp. 252–259. https://doi.org/10.1007/BF02379273.
Toutanova, K., Klein, D., Manning, C.D., Singer, Y., 2003. Feature-rich part-of-speech

tagging with a cyclic dependency network. Proceedings of the 2003 Human
Language Technology Conference of the North American Chapter of the Association
for Computational Linguistics, pp. 252–259.

2019. VirtualBreadboard.
Waterhouse, C., 2016. Crossed wires: investigating the problems of end- user developers

in a physical computing task. Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems - CHI ’16, 1, p. 38.

Williams, S., Power, R., Third, A., 2014. How easy is it to learn a controlled natural
language for building a knowledge base? International Workshop on Controlled
Natural Language. Springer, pp. 20–32.

Wu, T.-y., Yang, X.-d., 2019. Proxino : Enabling Prototyping of Virtual Circuits With
Physical Proxies (c).

Yoshua Bengio, Patrice Simard, Paolo Frasconi, 1994. Learning long-term dependencies
with gradient descent is difficult. IEEE Trans. Neural Netw. 5 (2), 157.

Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R.,
Toderici, G., 2015. Beyond short snippets: deep networks for video classification.
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Zhan, Y., Hsiao, M., 2019. Multi-label classification on natural language sentences for
video game design. 2019 IEEE International Conference on Humanized Computing
and Communication (HCC). IEEE, pp. 52–59.

Zhu, K., Zhao, S., 2013. Autogami: a low-cost rapid prototyping toolkit for automated
movable paper craft. Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. Association for Computing Machinery, New York, NY, USA,
pp. 661–670. https://doi.org/10.1145/2470654.2470748.

T. Chen et al.

http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0023
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0023
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0024
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0024
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0024
https://doi.org/10.1145/2247569.2247578
https://doi.org/10.1145/3369838
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0029
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0029
https://doi.org/10.1038/nprot.2006.61
https://doi.org/10.1038/nprot.2006.61
http://arxiv.org/abs/1011.4088v1
https://doi.org/10.18653/v1/N16-1030
https://doi.org/10.18653/v1/N16-1030
http://arxiv.org/abs/1603.01360v3
https://doi.org/10.1145/1866029.1866067
https://doi.org/10.1145/1866029.1866067
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0034
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0034
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0034
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0035
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0035
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0035
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0035
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0035
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0036
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0036
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0036
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0036
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0037
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0037
https://doi.org/10.1145/3242587.3242593
https://doi.org/10.1145/3242587.3242593
https://doi.org/10.1145/3290605.3300633
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0040
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0040
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0040
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0040
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0041
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0041
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0041
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0041
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0042
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0042
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0043
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0043
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0043
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0043
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0043
https://doi.org/10.1145/2901790.2901833
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0045
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0046
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0046
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0046
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0046
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0046
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0046
http://arxiv.org/abs/1901.10457
https://doi.org/10.12835/ve2017.2-0095
http://arxiv.org/abs/1504.01575v2
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0053
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0053
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0055
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0055
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0055
https://doi.org/10.1017/S135132490000005X
https://doi.org/10.1007/BF02379273
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0060
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0060
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0060
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0060
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0062
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0062
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0062
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0063
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0063
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0063
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0065
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0065
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0066
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0066
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0066
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0067
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0067
http://refhub.elsevier.com/S1071-5819(21)00117-8/sbref0067
https://doi.org/10.1145/2470654.2470748

	FritzBot: A data-driven conversational agent for physical-computing system design
	1 Introduction
	2 Related work
	2.1 Conversational user interfaces
	2.2 Circuit-design and -prototyping interface
	2.3 Named-entity recognition for natural-language processing

	3 Natural language and circuit prototyping
	3.1 Collection of novice users’ physical-computing description
	3.2 Lexical circuit-event database
	3.3 Design features of FritzBot

	4 System walk-through
	5 System Implementation
	5.1 Named-entity recognition
	5.2 Circuit and code generation
	5.3 Components dictionary and error correction
	5.4 Natural-language output
	5.5 Front-end user interface

	6 User study
	6.1 Participants
	6.2 Task
	6.3 Procedure
	6.4 Results
	6.4.1 Task-completion time and rate
	6.4.2 Usability and user engagement
	6.4.3 Perceived workload

	7 Discussion
	8 Limitations and future work
	9 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	References

