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A B S T R A C T   

Creating physical-computing systems, especially selecting correct electronic components, assembling the circuit, 
and implementing the program, can be challenging for novice users. In this paper, we present FritzBot, a data- 
driven conversational agent supporting novice users on creating physical-computing systems through natural- 
language interaction. FritzBot is built upon the structure of a BiLSTM-CRF (bi-directional Long Short-term 
Memory Network and Conditional Random Field) neural network, as a plug-in for Fritzing. The neural 
network is trained on a lexical circuit-event database derived from 152 students’ reports on their physical- 
computing course projects. By processing the user’s textual description on his/her physical-computing idea, 
FritzBot can extract the causal relationships between the input and the output events, identify the corresponding 
electronic components, and generate the Arduino-based circuit and the code along with the step-by-step con-
struction guidelines. Our user study shows that compared to the original Arduino software and the circuit- 
autocompletion software available in the commercial market, FritzBot significantly shortens the time spent, 
reduces the perceived workload, and enhances the satisfaction/joy for inexperienced users on designing and 
prototyping physical-computing systems.   

1. Introduction 

Creating physical-computing systems through circuit design and 
micro-controller programming has became a common practice perme-
ating into various fields such as maker activities, STEM education, new 
media art, product design, and so on. There have been various hardware 
platforms (Arduino, 2019; Bea, 2019; Raspberry Pi, 2019) and software 
(Knörig et al., 2009; Tinkercad, 2019) supporting novice users with 
minimal technical knowledge to create functional electronic circuits. 
While these tools have lowered the entry bar of physical computing, they 
still require technical background to a certain extend, such as the 
knowledge of electrical theory, a large library of components, and how 
to use them. Along with the rapid-prototyping electronic platforms, the 
specially packaged programming languages/libraries and the visual 
programming languages (e.g. Scratch, 2019) can simplify the coding 
processes. However, they still require a basic level of programming 
knowledge (e.g. syntax, storage, control flow, Boolean logic, etc.), which 
many designers, especially students, may not have. Recent research has 
shown that it was challenging for most users to construct a circuit with 
correct code for a physical-computing task, even for those who have a 

technical background (Mellisy et al., 2016; Waterhouse, 2016). 
While existing tools for circuit auto-completion (Circuito.io, 2019; 

Lo et al., 2019) can simplify the process of circuit design, these systems 
still require users to decide/choose what components to use at the very 
beginning. Though novice users often have high-level concepts/ideas 
about what they want to make, it could be still challenging for them, 
without prior technical knowledge/experience, to decide what elec-
tronic components to use (Mellisy et al., 2016). In addition, these sys-
tems do not provide assistance on micro-controller programming to 
make the circuit actually functional as desired. There is also research 
focusing on circuit and code generation through dragging and dropping 
logical action blocks (Anderson et al., 2017). However, it still requires 
users to have prerequisite knowledge of programming logic. Further-
more, the aforementioned systems are all GUI-based, while research 
shows that combining both graphical widget interaction and 
natural-language interaction can enhance the system capability than 
either technology could individually (Cohen, 1992). More recently, re-
searchers investigated leveraging the voice user interface to support 
circuit prototyping (Kim et al., 2019). Yet, it still requires users to have 
basic knowledge of circuit principle and programming logic to describe 

* Corresponding author. 
E-mail address: keninzhu@cityu.edu.hk (K. Zhu).  

Contents lists available at ScienceDirect 

International Journal of Human - Computer Studies 

journal homepage: www.elsevier.com/locate/ijhcs 

https://doi.org/10.1016/j.ijhcs.2021.102699 
Received 14 August 2020; Received in revised form 15 July 2021; Accepted 27 July 2021   

mailto:keninzhu@cityu.edu.hk
www.sciencedirect.com/science/journal/10715819
https://www.elsevier.com/locate/ijhcs
https://doi.org/10.1016/j.ijhcs.2021.102699
https://doi.org/10.1016/j.ijhcs.2021.102699
https://doi.org/10.1016/j.ijhcs.2021.102699
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2021.102699&domain=pdf


International Journal of Human - Computer Studies 155 (2021) 102699

2

their ideas with a pre-defined technical format. 
In this paper, we present FritzBot, a BiLSTM-CRF-based conversa-

tional agent offering assistance for novice users on circuit construction 
and programming through natural-language interaction. After analyzing 
152 student reports from an undergraduate physical-computing course 
in a local art school, we find that physical-computer concepts are mostly 
described in the form of cause/input and effect/output, such as “When 
the user <e1>swings </e1>the baton, a bird will <e2>sing </e2>a 
song.” (e1 and e2 indicate the input and the output events, respectively), 
to indicate the input and the output elements. With this consideration, 
the conversational engine of FritzBot is developed based on a BiLSTM- 
CRF neural network to identify the input events and the output events 
in users’ textual descriptions. When a user enters the textual description 
of his/her physical-computing idea, FritzBot will extract the causal 
relationship, identify the input and the output components, and 
generate the corresponding Arduino-based circuit and code along with 
the construction guidelines. Meanwhile, FritzBot will generate textual 
responses to guide the user to improve his/her concept if missing ele-
ments are found. Our between-subjects user study with twenty-four art/ 
design students shows that compared to the original Arduino software 
and the circuit-autocompletion software in the market, FritzBot could 
significantly reduce the time spent and the perceived workload, and 
enhance the user satification/joy for the physical-computing task. 

The primary contributions of this paper are:  

1) We construct a lexical circuit-event database for modeling novice 
users’ natural-language behaviors on physical-computing system 
design and development.  

2) For proof of concept, we develop FrtitzBot, a BiLSTM-CRF-based 
system leveraging natural-language interaction for designing and 
creating Arduino-based physical-computing systems. The data set 
and the source code for model training are available at https://gith 
ub.com/taizhouchen/FritzBot.  

3) We conduct a user study showing the effectiveness of FritzBot on 
supporting novice users’ physical-computing task through natural- 
language interaction. 

2. Related work 

In this session, we will discuss prior works on the conversational user 
interfaces for creative tasks and the interactive supporting tools for 
circuit design and prototyping. We will also discuss existing works on 
the deep-learning model for the named-entity recognition task in 
natural-language processing, which is the core algorithm for FritzBot. 

2.1. Conversational user interfaces 

Natural-language-based conversational user interface have been 
widely researched in the past few decades in several domains, including 
smartphone assistant (Bixby, 2019; Li et al., 2017; 2018; 2019), TV as-
sistant (Coelho et al., 2011), public art creation (Fernando et al., 2009), 
image editing (Laput et al., 2013), web automation (Lau et al., 2010), 
vehicle interface (Lin et al., 2018; Sung et al., 2019), and database 
management (Thanisch, 1995). Before the era of machine learning for 
natural-language processing, controlled natural language (CNL) (Kuhn, 
2014) was widely applied in various domains. The recognition of CNL 
was achieved by constructing subsets of natural languages that are ob-
tained by restricting the grammar and vocabulary in order to reduce or 
eliminate ambiguity and complexity. However, the specific keywords 
and grammars may increase the users’ learning efforts (Williams et al., 
2014). FritzBot was initially inspired by GameChangineer (Zhan and 
Hsiao, 2019), a platform that allows users to create computer games 
through natural-language-based programming. It extracts the game 
mechanism from an English sentence with per-defined keywords and 
sentence formats. Similarly, Vajra (Schlegel et al., 2019) proposed an 
end-user programming paradigm for Python. It allows users to compose 

Python programs through natural-language description. PixelTone 
(Laput et al., 2013) combines speech and direct manipulation for image 
editing. The user study shows that the integration of natural language in 
the task of image editing can effectively improve the working efficiency. 
Recently, Srinivasan et al. (2019) introduced an image-editing method 
combining both touch and speech inputs. While the aforementioned 
researches showed the benefits of natural-language interaction on 
various creative processes, the potential of leveraging natural-language 
interaction on supporting physical-computing prototyping tasks is not 
fully explored yet. To construct a physical-computing system, like in 
other creative tasks, novice users often can verbally describe their ideas, 
but may not know which components to use. Built upon the framework 
of BiLSTM-CRF neural network, FritzBot supports novice users, such as 
inexperienced designers and artists, to create a functional 
physical-computing system by simply describing their ideas in natural 
language. 

2.2. Circuit-design and -prototyping interface 

Many software have been developed to facilitate breadboard circuit 
design. Fritzing (Knörig et al., 2009) offers a drag-and-drop interface for 
both novice and experienced users to create virtual breadboard circuits 
using common electronic components. As an open-source software, 
Fritzing has been widely used in makers’ community. Virtual Bread-
board (VirtualBreadboard, 2019) and TinkerCAD (Tinkercad, 2019) 
provide similar functionalities as Fritzing does, but with a build-in 
simulator allowing user to debug their circuit and code. Circuito.io 
(2019) could automatically completes the circuit connection after user 
drag and drop the components. Similarly, AutoFritz (Lo et al., 2019) 
provide a circuit auto-completion function by analysing online Fritzing 
projects. Although these tools could give users guidelines for connecting 
components, it is common that some novice users have no idea of what 
component they should use to achieve the desired functions. Moreover, 
composing computer programs for micro-controller is another challenge 
for novice users who want to create physical-computing systems. A 
recent study shows that only six out of twenty participants could suc-
cessfully complete both hardware and software parts of a simple phys-
ical computing task (Waterhouse, 2016). Trigger-Action-Circuits 
(Anderson et al., 2017) simplifies the circuit logic into a high-level 
behavioral description, which is easier to understand. However, it still 
requires users to have basic knowledge of computer logic. Wu and Yang 
(2019) develop Proxino, a tool that blends virtual and physical worlds 
for prototyping circuits. While these interfaces provide different levels of 
support for prototyping physical-computing systems, users sometimes 
still have to obtain basic, sometimes even advanced, circuit and pro-
gramming knowledge. More recently, Kim et al. developed HeyTeddy 
(Kim et al., 2019), a voice interface for functional circuit prototyping. 
Their study proved that with the support of voice input, the circuit 
prototyping efficiency could be increased. Although HeyTeddy provides 
a similar idea as FritzBot, that is, introducing natural language inter-
action for circuit prototyping, HeyTeddy still requires users to have basic 
knowledge of circuit and logical programming to describe the desired 
features in a pre-defined technical format, while FritzBot was designed 
for more novice users. Taking a hand-waving robot as an example, 
HeyTeddy user needs to identify the key component (i.e. a servo motor 
here), wire the component circuit, and provide the voice command such 
as “write high/low to pin#”; In FritzBot, the user just need to enter a 
natural sentence like “I want to make a robot that waves its hand.”, and 
FritzBot dynamically generates the corresponding Arduino-based circuit 
and code with the support of the lexical circuit-event database and the 
machine-learning model. In addition, voice-based user interfaces may 
not be conducive to privacy and noisy environments, such as a classroom 
with many students. 
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2.3. Named-entity recognition for natural-language processing 

The conversational engine of FritzBot was built upon the algorithm 
of named-entity recognition for natural-language processing. In this 
work, we form our database by extracting all the cause-effect sentences 
from the students’ physical-computing project reports. The essential 
task of Fritzbot’s conversational engine is to recognize the cause phrase 
entities as the input events and the effect phrase entities as the output 
events, from the user-input sentence which can be modeled as a 
sequence of words. Most existing sequence-tagging models are based on 
the linear statistical models, mainly including Hidden Markov Models 
(HMMs) (Rabiner and Juang, 1986) and conditional random fields 
(CRFs) (Lafferty et al., 2001). With the emerging technology of deep 
machine learning, recurrent neural networks (RNNs) were designed to 
operate on sequential data, but they tend to be biased towards their most 
recent inputs in the sequence (e.g., neighboring words in a sentence) 
(Yoshua Bengio et al., 1994). This makes this type of model not so 
suitable for natural-language processing. Long Short-term Memory 
Network (LSTM) (Hochreiter and Schmidhuber, 1997) and bidirectional 
LSTM (BiLSTM) (Schuster and Paliwal, 1997) were proposed to capture 
long-range dependencies in the data sequence, and it has been proved to 
outperform traditional RNNs architecture in video processing (Yue-Hei 
Ng et al., 2015), sketch encoding (Ha and Eck, 2017), and sensor signal 
processing (Huang et al., 2018). Named-entity recognition task, namely 
sequence tagging task, was highly relied on both past features (previous 
few words) and future features (next few words) in the input sequence. 
Combining BiLSTM and CRF proved to perform very well on 
named-entity recognition task (Huang et al., 2015; Lample et al., 2016). 
In FritzBot, we adopt the technique of BiLSTM + CRF (Huang et al., 
2015), to extract the causal relationships in the user’s natural-language 
description of his/her physical-computing idea. 

3. Natural language and circuit prototyping 

To understand how natural-language interaction can be used to 
support the task of creating physical-computing systems, we first study 
how novice users, mainly art/design undergraduate students, describe 
their physical-computing ideas in natural language. 

3.1. Collection of novice users’ physical-computing description 

In the current work, we identify art and design undergraduate stu-
dents as our target user group, as they may have limited experience in 
technical development but could be often motivated to prototype their 
art/design ideas. We analyse 152 student-project reports from an 
Arduino-based physical-computing course which has been offered in the 
past three years in a local university. The purpose of this analysis is to 
understand how users with beginner/intermediate levels of knowledge 
on coding and circuit prototyping may describe their physical- 
computing ideas, and how the description would be mapped to elec-
tronic components and circuits. This course is offered to the second-year 
undergraduate students of interactive art and design, with the prereq-
uisite knowledge of basic computer programming. In the end of the 
course, the students need to finish a creative physical computing project 
using Arduino (Arduino, 2019). They need to answer two main ques-
tions in details: “What they build” and “How they do it”, in their project 
reports. Under the “What they build” section, the student needs to 
generally describe his/her idea, and describe the interactive features. 
Under the section “How they do it”, the student needs to report the 
technical details of the system implementation, include what electronic 
components they use, how they work, the circuit schematic, and the 
code. 

We manually went through all the reports, and observed that most of 
the students tend to describe their system ideas in a form of logical 
causal connection (i.e. input causes output). Among all the student re-
ports, 126 reports describe their systems using the cause-effect 

sentences. For instance, a student describes his system as “When player 
lift the dumbbell five times, one of the LED would be turned on, and while 
every single LED light up, theres a ringtone to remind you”, and another 
students describes “When we open the cover on the top of the box and let 
light in, it will trigger the light”. For the rest of the student reports, ten 
described their system functions directly using the object names, such as 
“piano” (7) and “guitar” (3); nine reports described their output as video 
or animation on the computer screen, instead of the output in a physical- 
computing system; nine systems were described in a too general manner, 
such as “The light reacts to user’s different input”. The aforementioned 
non-causal system description are out of the focus of our current paper. 
In addition, exiting works tend to describe and construct the mathe-
matical models of the controlling systems (e.g., robots) based on the 
causality mapping between their input and output (Boland, 1979; Hart 
et al., 1972; Iwakiri and Matsumoto, 2011). To this end, we focus on the 
cause-effect sentences for constructing our database. In total we extract 
154 cause-effect sentences that are used to describe the features of the 
physical-computing systems. We categorize these sentences into in the 
four common patterns shown in Table 1. All these sentences consist of 
causal relation, including one or multiple pairs of cause and effect 
events. Therefore, we consider that while describing their ideas, most 
students tend to describe the system as a black box which will take the 
input event as the cause, and provide the output event as the effect. We 
construct a linguistic model for describing a physical-computing system 
as “a causal sentence encoding the input and the output events” as follow. 
For these 154 sentences, we invited an English teacher to label the cause 
terms (i.e. input) as “<e1 >... </e1>” and the effect terms (i.e. output) 
as “<e2>... </e2>”. For instance, in Case 1 in Table 1, the student 
wants to make a baton to control a toy bird singing. From his/her 
description, it is a system that takes the “swing” event as input, causing a 
“sing” event. To keep the consistency for later system implementation 
and reduce the ambiguity of multiple events, we label the verb phrases 
as the input/output events prior to the nouns in a sentence. Based on our 
analysis, some systems consist of multiple inputs and outputs. In Case 2 
in Table 1, the student designs a toy stick reacting to different inputs. In 
this case, both “press” and “wave” are denoted as the input events while 
both “played” and “blinked” are the output events. Case 4 shows an 
example of one input, “opening”, corresponding to multiple outputs, 
“turn on”, “turning around”, and “plays”. 

3.2. Lexical circuit-event database 

Based on the causal sentences extracted from students’ reports, we 
construct a lexical circuit-event database, to study the mapping between 
words and electronic components. For each project report, we manually 
extract the used electronic components. For example in Case 1 in 
Table 1, the student uses an Inertial Measurement Unit (IMU) to detect 
the “swing” movement, and a buzzer to play the music. Therefore, we 
can create a semantic correlation for the input event “swing” with the 
component “IMU”, and the output event “sing” with the output 
component “speaker”. Though we mostly label the verb phrases as the 
events prior to the nouns to reduce ambiguity, ambiguity may still occur 
occasionally. Some events and verb phrases could be general, and may 
correlate with multiple components. For instance, the correlated 
component for the event/word “detect” highly depends on its object. In 
Case 3 mentioned above, the student wants to make an automatic irri-
gation system that can automatically water the plant if there is not 
enough moisture in the soil. From his/her description, we label “detect” 
and “release” as the input and the output events respectively, while 
“detect” and “release” can be related to several electronic components. 
In this case, as the student implemented, the component for “release” is 
“water pump” according to its object “water”, and the component for 
“detect” is “humidity sensor” according to its object “humidity”. To 
identify the ambiguity, we compute the Shannon Entropy (Shannon, 
1948) for each event as shown in Eq. (1). 
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Table 1 
Examples of cause-effect sentence from the reports.  

Fig. 1. All event phrases extracted from 126 student project reports which use causal sentences for project description. The number in bracket indicates the 
component’s usage frequency. Star symbol (*) highlights the merged event. Dagger symbol (†) denotes the ambiguous events. 
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Hs =
∑n

i=1
piIi = −

∑n

i=1
pilog2pi (1)  

where pi is the probability of a component to occur under event i, n is the 
total number of components. I is the information function of event i with 
probability pi, which is defined as log2pi by Shannon (1948). The en-
tropy values for all the labeled events are shown in Fig. 1. Hs = 0 in-
dicates the events that are unambiguous. The higher the entropy score is, 
the more ambiguous it is. We treat an event with a entropy score lager 
than 0.5 as the ambiguous event for additional processing in our algo-
rithm which will be described later in Section 5.2. In total we found 74 
unique phrases for the input events and 72 unique phrases the output 
events. To regularize the event, we apply a merging scheme for the event 
phrases that have similar meaning. For example, we merge “move” and 
“movement”, “spin” and “spinning”, and so on. This reduces the number 
of events to 53 for both input events and output events (Fig. 1). We also 
summarize 11 input electronic components and 8 output electronic 
components that commonly used in the students’ reports (Fig. 2). This 
lexical database serves as the foundation of the FritzBot implementation, 
including the training of the machine-learning model for natural lan-
guage process and the solution-generation mechanism which we will 
describe in details later. 

3.3. Design features of FritzBot 

We design FritzBot as a conversational agent that aims to facilitate 
circuit construction and coding for novice users. Considering the prob-
lems that may be encountered by novice users during a physical- 
computing task (Mellisy et al., 2016; Waterhouse, 2016), such as 
component selection, wiring, and programming, we identify a list of 
design features that need to be reflected in FritzBot. 

Solution recommendation Previous works (Mellisy et al., 2016; 
Waterhouse, 2016) suggest that users mostly encounter the problems of 
selecting correct components, designing circuit, and composing the 
microcontroller programs. Therefore, we design FritzBot to generate the 
schematic of a Arduino-based circuit and code with the input and the 
output components based on the causal relationship extracted from the 
user’s input sentence. Meanwhile, FritzBot will also generate the textual 
responses with a pre-defined format to explain the generated solution. 

In addition, we support error correction. If users’ input contains a 
specific component (e.g “if the distance detected by the ultrasonic sensor... 
”), FritzBot will detect the component phrase in the sentence and check 
the correspondence between the user-mentioned sensor and the 
extracted event by checking the lexical circuit-event database. If user 
mentioned the wrong component (e.g. “if the distance detected by the 
infrared sensor... ”), FritzBot will retrieve and suggest the correct one 
(“ultrasonic sensor”) to achieve the desired goal (“detect the distance”). 

Fig. 2. Circuit components that are commonly used by the students.  

T. Chen et al.                                                                                                                                                                                                                                    
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Event customization FritzBot allows users to customize the levels/ 
parameters of the detected input/output events. For a detected event, if 
there is no adverb or adjective detected in the user-input sentence, 
FritzBot will ask user to textually parameterize the event through text 
response. In FritzBot, we allow users to define the event attributes for 
each event (e.g. adjust the brightness for a light as “very bright” or 
“dim”, define a distance threshold as “closed” or “far”, etc.) 

Step-by-step construction guidelines Another problem commonly 
encountered by users is mis-wiring (Waterhouse, 2016). We design 
FritzBot to generate the wiring guidelines in the format of multiple steps. 
We also allow users to track back to any step if it is necessary. 

Solution restoration FritzBot allows the user to restore to the previous 
generated solution if he/she is not satisfied with the current one. 

Components dictionary For the educational purpose, we design 
FritzBot to support natural-language question/query-based interaction 
on the usage of components. FritzBot is able to take questions like “Can 
you tell me how to detect the distance?”. It will search from the database, 
retrieve the component “ultrasonic sensor” correlated to the detected 
event “distance”, and generate a template circuit and code of that 
particular component. If a user is curious about how to use a component, 
he/she could select that component’s icon in the Fritzing interface, and 
enter his/her question (e.g. “How to use it”). FritzBot will provide the 

template circuit and code, with predefined textual responses. 
The implementation of the features above will be described in details 

in Section 5. 

4. System walk-through 

In this section, we will demonstrate the main functions of FritzBot 
with an running example. Alan is a bachelor student majored in design. 
He would like to build a smart robot that will react to different human 
activities as follow: 1) the robot will sing a song loudly when there is 
someone getting close to it; 2) it will wave its hand and blink its eyes 
while being touched; 3) it will run away if someone is shouting at it. 
After formulating his design idea, Alan starts to create a physical- 
computing prototype with FritzBot. 

Once Alan enters that he would like to make a robot, FritzBot replies 
him to ask for more details about the robot (Fig. 3a). To describe the first 
function, Alan enters “The robot will sing a song when we get close to it”. 
After a few seconds of data processing, FritzBot generates a semi- 
completed system shown in the canvas. In addition, FritzBot asks Alan 
for more detailed parameters for the “sing” event (Fig. 3a). Alan re-
sponds with “I want the robot to sing loudly”, and FritzBot refreshes the 
generated system in the canvas (Fig. 3b). Then Alan starts to work on the 

Fig. 3. System walk-through.  
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second function, by telling FritzBot “I want the robot to wave its hand and 
blink its eyes when I touch it”. FritzBot suggests to use a servo motor and 
LED for the wave event and the blink event respectively. FritzBot also 
asks Alan how many LED he would like (Fig. 3c). Alan replies with “The 
robot has two eyes”. FritzBot then responds with a system containing two 
LEDs (Fig. 3d). 

Lastly, Alan enters “And if I shout at it, it will run away”. FritzBot tells 
Alan that he should use a microphone to detect the “shout at” event and 
use DC motors for “run away”. FritzBot then asks Alan for the quantity of 
DC motor (Fig. 3e). Alan decides that the robot should have two wheels, 
and enters “I want two DC motors”. FritzBot replies with a completed 
system (Fig. 3g). Alan then opens the construction-steps window, and 
follows the instructions to build the circuit step by step (Fig. 3g top- 
middle). He can track back to any previous step for a clearer view of 
wires. After finishing the circuit, he then connects the Arduino UNO to 
his laptop, navigates to the code view, and uploads the code (Fig. 3g 
bottom). 

After prototyping the robot, Alan wants to add one more function to 
the robot. He would like the robot to know if there is people shaking its 
hand. He is trying to do that by himself, but he don’t know how to detect 
the “shaking” action. He asks FritzBot: “Can you tell me how to detect 
‘shaking’?”. FritzBot replies that an IMU is suggested for detecting 
“shaking” and shows a sample circuit (Fig. 3f). Alan is satisfied with the 
response, and starts to explore the physical-computing system by 
himself. 

While existing physical-computing prototyping platforms (e.g. Cir-
cuito.io, 2019) could also provide the wiring solutions for the electrical 
components used in the example above, Alan may still encounter diffi-
culties on deciding what components he should use at the very begin-
ning. For example, Alan may not know which sensor to be used to detect 
the event of “getting close to the robot”. Thus, he may need to search on 
the Internet or go through the course materials. After finding the correct 
sensor to use, he need to again check the textbook or online example 
projects for the sample code to drive the sensor, and integrate the sample 
code into his own project. Alan needs to repeat this process of searching 
and integrating for all the other functions of his idea, and this whole 
process could be time-consuming. Using FritzBot, he could ask 
high-level questions specifically related to the project, and save time for 
the creative ideation process. 

5. System Implementation 

The current prototype of FritzBot is implemented as a plug-in of 
Fritzing (Knörig et al., 2009). Fig. 4 depicts the system overview of 
FritzBot. FritzBot consists of three parts: (1) A neural network to extract 

the cause/input and the effect/output events from a sentence input by 
the user; (2) A back-end system to process the extracted events and 
retrieve the corresponding components; and (3) a front-end user inter-
face for receiving inputs and showing outputs. 

5.1. Named-entity recognition 

The core feature of FritzBot is to extract the input event and output 
event in a sentence for details. For this purpose, we train a BiLSTM-CRF- 
based neural network for named-entity recognition based on our 
dataset. 

Dataset preparation As discussed before, we invited an English teacher 
to label the cause and the effect terms in the 154 sentences collected 
from the student reports. The teacher is instructed to select verbs prior to 
nouns to represent the cause/effect events. We do this mainly because of 
our observation that in most cases, a verb could better represent the 
event with a lower ambiguity compared to a noun, as shown in the 
entropy values in Fig. 1. However, a few cases may only contain nouns to 
represent the events. For instance, for a sentence like “The light and music 
will become weird and spooky when another sensor has sensed someone 
passes through.”, we instruct the English teacher to label the noun “light” 
and “music” for the output events and the verb “passes through” for the 
input event. After labeling, we invited two undergraduate students 
majored in English to rephrase the sentence for data augmentation, 
expanding the dataset to 634 sentences. 

BiLSTM-CRF model In order to label the input and the output entities 
from a sentence which is modeled as a list of sequential data (i.e., a 
sequence of words), we implement a named-entity recognition algo-
rithm for sentence processing. Similar to the existing works (Huang 
et al., 2015; Lample et al., 2016), we build a BiLSTM-CRF model to label 
entities in a sequence of words (i.e. a sentence). In FritzBot, We imple-
ment the BiLSTM model as follow: 

it = σ(Wxixt +Whiht− 1 +Wcict− 1 + bi) (2)  

ft = σ
(
Wxf xt +Whf ht− 1 +Wcf ct− 1 + bf

)
(3)  

ct = ftct− 1 + ittanh(Wxcxt +Whcht− 1 + bc) (4)  

ot = σ(Wxoxt +Whoht− 1 +Wcoct + bo) (5)  

ht = ottanh(ct) (6)  

where σ is the sigmoid function, i, f , c and o are input gate, forget gate, 
cell state, and output gate respectively. The weight matrix subscripts 
have the meaning as the name indicates. For example, Whi denote the 

Fig. 4. FritzBot system overview. The input 
sentence was first uploaded to the Dialogflow 
server for intent recognition. If the sentence is 
describing a causal logic (red arrow), it will be 
pass to a BiLSTM-CRF network (green block) for 
input and output events recognition before 
retrieving components from the lexical circuit 
database and the attributes recognition process 
(light blue block). FritzBot will then check 
current system completeness and generate cir-
cuit preview, code, and responses (gray block). 
Yellow arrow indicates the workflow if the user 
is asking FritBot for component usage or 
component selection. If the user is answering 
FritzBot’s question, it will be recognized as 
other intents (green arrow). (For interpretation 
of the references to color in this figure legend, 
the reader is referred to the web version of this 
article.)   
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weight matrix for computing input gate contributing from the hidden 
vector. Wxf denotes the weight matrix for computing forget gate 
contributing from x, etc. b denotes the bias for each gate. ht is the hidden 
vector that output at each time step and passing to the next LSTM cell. 
Instead of using a single direction LSTM, we implement a bi-directional 
LSTM (BiLSTM) (Schuster and Paliwal, 1997), which have been proved 
to perform better in sentence named-entity recognition task (Huang 
et al., 2015). For a given sentence X = (x1, x2, x3...xn) containing a 
sequence of n words, each word is represented as a d-dimensional 
feature vector. We compute the feature vector by concatenating the 
vector of Part-of-Speech (POS) tags (Tomberlin, 2003; Toutanova et al., 
2003) and a word vector computed by a pre-trained BERT model 
(Devlin et al., 2018a). Specifically, we generate the POS tags using the 
NLTK toolkit (Loper and Bird, 2002), in the format of a 35-dimensional 
vector. The pre-trained BERT model outputs a word-embedding vector 
of length 512. Therefore, the whole feature vector is 547 dimensional (i. 
e., d = 547). The BiLSTM computes each word vector sequentially from 

left to right and output a representation feature vector h
→

t for word xt. 
Since the information in a sentence from both past (previous few words) 
and future (next few words) are both useful for sequential tagging, we 

compute another feature vector h
←

t from right to left of the sentence for 
word xt. The final output feature vector of the BiLSTM at word xt would 
be the concatenation of the left and the right representation ht =

[ h
→

t ; h
←

t ]. 
The input and the output events/entities in a sentence is highly 

related to their neighbor words (i.e. when, if, before, etc.). To encode the 
neighbor tag feature in predicting the current tag, we implement a CRF 
model (Lafferty et al., 2001) on top of the BiLSTM output to select the 
best predicted sequence. We follow the same pipeline proposed by 
Lample et al. (2016) which was proved to perform well on named-entity 
recognition task. For an input sequence to the network X = (x1, x2, x3… 
xn) and a sequence of prediction Y = (y1,y2,y3…yn), we define its score 
to be: 

score(X,Y) =
∑n

i=0
Ayiyi+1 +

∑n

i=1
hi,yi (7)  

where A is the transition matrix. Specifically, Aij represent the possibility 
of the transition from tag i to tag j. A is a trainable parameter in the CRF 
model. During training, we initialize it as an all-zero matrix. We 
compute the SoftMax possibility of the target sequence Y as follow: 

P(Y|X) =
escore(X,Y)

∑

Ỹ∈YX
escore(X,̃Y)

(8)  

where YX represents all possible sequences. Ỹ denotes every individual 
sequence during the iteration. During training, we maximize the log- 
likelihood of the ground truth tag sequence: 

log(P(Y|X)) = score(X, Y) − log

⎛

⎝
∑

Ỹ∈YX

escore(X,̃Y)

⎞

⎠ (9)  

While predicting, we choose a output sequence that have a maximum 
score computed by: 

Y∗ = argmax
Ỹ∈YX

s
(

X, Ỹ
)

(10)  

The aforementioned algorithm was implemented using Python 3.7.2 
with TensorFlow 1.13.1 framework. 

Training We split our dataset into the training set (507 sentences), the 
validation set (64 sentences), and the test set (63 sentences). We train 
our model on a desktop with one GTX 1080 Ti NVIDIA GPU with 32GB 
memory and one Intel i7-8700 CPU. We use a Adam optimiser (Kingma 

and Ba, 2014) (β1 = 0.9, β2 = 0.999) with learning rate of 10− 5 to 
optimise the model. During training, we apply the dropout technique 
(Srivastava et al., 2014) with dropout rate 0.5 to avoid over-fitting. 

Performance We conducted an ablation evaluation on the perfor-
mance of our BiLSTM-CRF model. Table 2 shows the performance under 
different hyper-parameters on the test set, where the highest accuracy 
occurs when using a 4-layers BiLSTM-CRF model with LSTM block in 
size 128. Furthermore, we compared the chosen BiLSTM-CRF structure 
with the BERT model (Devlin et al., 2018b) which is commonly applied 
for natural language processing, including named-entity recognition (Li 
et al., 2020). We configured the BERT model with the similar hyper-
parameter (i.e. maximum length of sequence) as the chosen BiLSTM-CRF 
structure. The comparison result suggested that our BiLSTM-CRF model 
could achieve a better testing accuracy upon our dataset (BiLSTM-CRF: 
92.46% vs. BERT: 89.57%). 

5.2. Circuit and code generation 

For each extracted phrase from the user-input sentences, FritzBot 
retrieves the most similar phrase (measured by the word distance of 
WordNet Miller, 1998) from the lexical circuit-event database and ob-
tains the corresponding electronic components. For ambiguous events, 
the system checks the similarity between its object and the phrases in the 
database until the most similar and the least ambiguous event is found. 
That is, if an ambiguous event phrase is identified in the user’s input 
sentence, the system will first sort the event phrases in the lexical 
database based on their word distances towards the object of the 
ambiguous phrase from smallest to largest, then the system will check 
the sorted list from the beginning to find the first phrase with the 
Shannon Entropy smaller than 0.5 (i.e. non-ambiguous event) as the 
final identified event for component retrieval. For each event, the system 
also checks its dependent adverb and adjective by using the algorithm of 
Part-of-Speech (POS) Tagging (Toutanova et al., 2003), to obtain the 
attribute of that event. If the system couldn’t find any adverb or adjec-
tive for the event attributes in the input sentence, it will respond with a 
question to ask the user to suggest an attribute for the event. Given the 
retrieved electronic components, the system generates the correspond-
ing circuit with a optimized A∗ search algorithm (Hart et al., 1968) to 
manage Arudino pins, dynamically distributes and wires all electronic 
components on the canvas to reduce overlapping. The wiring rule for 
each electronic component follows its tutorial in the physical-computing 
course which we create the lexical database upon. Each wiring 
connection is stored as an individual element in a stack structure for the 
function of step-by-step construction guideline. 

The code is generated in a object-oriented manner based on the 
electronic components and their attributes. We predefined several 
commonly used attributes for each component according to the 
physical-computing course syllabus. For instance, for LED, we allow user 
to define its brightness in three level (i.e. low, medium, and high) with 
five lighting pattern (i.e. turn on/off, blink, breathe, brighter, and 
dimmer). All available attributes for each component are represented as 
a .json file for the code generating algorithm. All the generated circuits 
and code are stored in a large stack structure for potential solution 
restoration by the user. 

5.3. Components dictionary and error correction 

The lexical database is used as the components dictionary, to allow 
the user to enquire the usage of a particular electronic component using 
the predefined question formats (i.e., “Can you tell me how to <perform a 
certain event>?”, and “How to use it” with a component selection in the 
Fritzing GUI). With the extracted event/component, FritzBot will 
retrieve and display the template circuit and code associated in the 
database. 

In the reports, we observed that some students tended to describe the 
system function along with a specific electronic component if they have 
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some prior knowledge. However, the components that the users pro-
vided may not always be correct. For example, the user may say “If I use 
an infrared sensor to detect distance... ” which is not correct. In this case, 
FritzBot performs the error-correction feature with two steps. First, if a 
circuit component is detected in the user’s input, FritzBot will first 
search for the corresponding event in the same input sentence based on 
the universal within-sentence dependencies (Nivre et al., 2016) 
computed by the StanfordNLP toolkit (Qi et al., 2019). Take the afore-
mentioned sentence as example, the event “distance” will be detected in 
the user input with the component “infrared sensor”. Second, FritzBot 
will then search the existence of the particular event-component map-
ping in the lexical database. If the mapping does not exist, FritzBot will 
identify that the user’s input may potentially contain an error, and 
suggest the correct component (i.e. “ultrasonic sensor” for detecting 
“distance”). In this case, FritzBot will respond with a pre-defined tem-
plate, “You should use <ultrasonic sensor>instead of <infrared sensor>to 
detect <distance>”, and generate a corrected circuit result. 

5.4. Natural-language output 

While FritzBot mainly focuses on circuit and code generation for a 
physical-computing task, it also generates natural-language feedback in 
order to facilitate users’ understanding of the generated circuit. There 
are two types of natural-language feedback: the response and the follow- 
up question. For the natural-language response, we predefined a set of 
sentence templates for different types of responses (i.e. the confirmation 
response and the error-correction response). The confirmation response 
is defined as “According to your description <e>, I suggest to use <c>as 
the input/output component.” where e is the extracted user input event 
and c is the corresponding retrieved electronic component. It would be 
triggered while FritzBot is generating the circuit solution or setting the 
circuit attributes (see section 5.2). The error-correction response (“You 
should use <c1>instead of <c2>to detect <e>.”) is for informing the 
user that there may be a wrong electronic component for his/her desired 
event (see section 5.3), where c1 is the correct component, c2 is the user- 
inputted component, and e is the extracted event. 

FritzBot treats a circuit that contains at least one input event and one 
output event along with their attributes as a complete system. FritzBot 
will check the completeness of the system during the user’s prototyping 
process. If the system is lacking any event attribute, FritzBot will 
generate a follow-up question to ask the user for providing a corre-
sponding attribute for the event. We predefined several follow up 
question templates to increase the language diversity. Specifically, 
FritzBot will ask “How many <c>would you like to have?” to get the 
quantity of the retrieved component c, or “How would you like the input/ 
output <e>to be?” to ask for the attribute of the corresponding input/ 
output event e, or “It seems like that your system is missing the input/output 
part. Would you like to provide more information?” if any input/output 
event is missing. 

5.5. Front-end user interface 

We implemented the front-end interface of FritzBot as a plug-in of 
Fritzing (Knörig et al., 2009) using C++ with Qt framework. The 
interface communicate with the back-end system (implemented using 
Python 3.7.2) through TCP/IP protocol. 

6. User study 

We conducted a between-subject user study to assess how novice will 
create a physical computing system using FritzBot, particularly to 
investigate if FritzBot can significantly reduce the time and the effort for 
physical-computing system construction. 

6.1. Participants 

Twenty-four participants (all design-majored students from a local 
university, 12 males and 12 females, averagely aging 22.1 years old with 
SD of 2.50) were involved in our study. The participants are randomly 
and evenly assigned to three groups: 1) Arduino Group (AG): using 
Arduino IDE only, 4 males and 4 females, Age Mean = 22.9, 2) Circuito 
Group (CG): using Circuito (Circuito.io, 2019) and Arduino IDE, 6 males 
and 2 females, Age Mean = 21.8, and 3) FritzBot Group (FG): using 
FritzBot, 2 males and 6 females, Age Mean = 21.1. The native Arduino 
IDE was chosen as the basedline. While there are existing research 
prototypes on facilitating physical-computing tasks, Circuito was chosen 
for comparison because it, as an commercial product, is widely available 
and used within the community. In addition, the existing research pro-
totypes are not available with enough details for reproduction. There-
fore, we adopt the evaluation strategy followed by other related works 
(Anderson et al., 2017; Kim et al., 2019) to compare our solution with 
the tools available in the market. All the three groups are provided with 
sufficient electronic components to finish the task, and allowed to search 
relevant knowledge on the Internet. We also include some distractor 
components in the component list to increase the level of confusion. We 
also provide the participant a set of digital documents on the basic 
introduction of electronic component and Arduino. The provided doc-
uments are compiled by a physical-computing teacher who has been 
teaching the related courses in a local design-related undergraduate 
program for five years. 

Prior to the study, the participants rate their electronic experience 
and programming experience at the level of “Never Try” − 1, “Beginner” 
− 2, “Intermediate” − 3, or “Expert” − 4. As the Shapiro–Wilk test 
shows a significant departure of the participant’s self-rated technical 
skills from the normal distribution, we adopted the non-parametric 
statistical analysis on these data. Kruskal Wallis Test indicates there 
was no different among the three groups in terms of electronic experi-
ence (AG: 2.13, CG: 2.25, FG: 2.00, H(2) = 1.208, p = 0.69) and pro-
gramming experience (AG: 2.75, CG: 2.5, FG: 2.63, H(2) = 5.565, p =

0.06). Genderwise, Mann-Whitney U Tests showed no significant 

Table 2 
Performance of the BiLSTM-CRF network with different hyper-parameters.  
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difference between females and males in terms of the technical back-
ground (Electronics: female − 1.36, male − 1.38, Z = 0.027, p = 0.978; 
Programming: female − 1.81, male − 1.92, Z = 0.057, p = 0.919). 

6.2. Task 

During the user study, users were asked to finish a “smart baton” 
project. The “smart baton” has the follow function: with the follow 
features/functions: 1) it will start vibrating while being presses; 2) a 
light on it will light up while being shaken; 3) it will play music loudly 
while being pressed and shaken at the same time. This task is derived 
from the physical-computing curriculum in the local university where 
we retrieved the student reports. Based on the physical-computing 
curriculum in the participants’ university, this task is of moderate dif-
ficulty for a 2nd-year design/art-majored student, and it can be 
completed in under an hour for novice using 5 electronic components, 
including 2 input components (i.e. a button and an accelerometer) and 3 
output components (i.e. an LED, a vibration motor, and a speaker/ 
buzzer) (Fig. 5). 

6.3. Procedure 

Before the main task, the participant was given a brief tutorial of 
basic electronics and Arduino, including the functions of common 
electronic components, the basic usage of Breadboard, and the basic 
logic of Arduino programming. Depending on the participant’s group, 
they were also given a brief instruction about FritzBot or Circuito.io or 
Arduino IDE. 

After the instruction, the participant was given a video (Fig. 6) 
demonstrating all functions of the task system. The video sequentially 
shows three functions with each of them being repeated three times. To 
avoid bias, we hide all electronic components for the implementation in 
the video, only showing the final input and output. For output that could 
not be visualized (e.g. vibration), we show a icon with animation. We do 
not provide any textual description in the video. After watching the 
video, the participant needs to describe each function that he/she saw 
from the video to ensure that he/she clearly understood the task. The 
participant was given 45 min to finish the task. With his/her permission, 
we recorded each participant’s time spent and level of completion. We 
also recorded the screen operation of each participant, to estimate the 
time for software usage (e.g., circuit design and coding), information 
searching through the web browsers and the provided materials, and 
physical circuit implementation. After the experiment, participants are 
required to answer a usability questionnaire on their impressions (1 - 
strongly disagree, 7 - strongly agree) of the system (i.e. Arduino IDE, 
Circuito.io, and FritzBot) and perceived workload. Following previous 
work on creative toolkit evaluation (Chen et al., 2019; Kazi et al., 2011; 
Zhu and Zhao, 2013), we choose the questionnaire items from the USE 
questionnaire (Lund, 2001) for the user-experience and the usability 
evaluation, and the NASA-TLX questionnaire (Hart and Staveland, 
1988) for the workload evaluation. 

6.4. Results 

In this section, we discuss the analysis on the time-completion time 
and the user experience across the three different groups. As the 

Shapiro-Wilk test shows a significant departure of the data from the 
normal distribution, we adopted the non-parametric statistical analysis 
for the participants’ task performance and their responses to the 
questionnaire. 

6.4.1. Task-completion time and rate 
In overall, Mann-Whitney U Test doesn’t reveal any significant dif-

ference between the female and the male participants in terms of the 
task-completion time. All FG participants successfully completed the 
task, while there is only one AG participant and one CG participant 
completed the task. Therefore, we treat the time spent by the other AG 
and CG participants as 45 min which is the set length of the task. The 
Kruskal Wallis Test shows a significant effect of the grouping on the task 
completion time (H(2) = 18.27, p < 0.0005). The pair-wise Mann- 
Whitney U Tests show that the FG participants spent significantly 
shorter time (Mean = 26.5 min, SD = 2.96) than the AG participants 
(Mean = 44.3 min, SD = 0.75, Z = 3.40, p < 0.005) and the CG par-
ticipants (Mean = 44.4 min, SD = 1.65, Z = 3.46, p < 0.005). Fig. 7 
shows the time spent on different functions of the three groups. We treat 
each function as a subtask to represent the observable milestones. As 
most AG and CG participants couldn’t complete the third functions, we 
mainly compare the completion time for the first two functions/sub-
tasks. Kruskal Wallis Test shows a significant effect of the grouping on 
the completion time for the first and the second functions (Func.1: H(2)
= 6.36, p < 0.05; Func.2: H(2) = 16.27, p < 0.005). Overall, the FG 
participants completed the first two functions significantly faster than 
the participants in the other two groups. The Kruskal Wallis Test also 
shows a significant difference among the groups in terms of task- 
completion rate (H(2) = 13.69, p < 0.005. FG: 100%, CG: 62.6%, AG: 
54.1%). 

We further break down the task completion time into three main 
parts: 1) software usage (e.g., circuit design and coding), 2) physical 
circuit implementation, and 3) information searching (e.g., web 
browsing and referring to the provided material). Specifically for the 
information-searching time, we focus on the time duration for a user 
using other tools, such as web browsers and e-book readers, to search 
relevant physical-computing knowledge. As we didn’t observe any FG 
participants switching to other software during the experiments, we set 
their information-searching time as 0. Fig. 8 shows the time spent on 
different activities of the three groups. 

The Kruskal Wallis Test shows that there is a significant effect of the 
grouping on the time for information searching (H(2) = 17.44, 
p < 0.0005) and physical circuit implementation (H(2) = 10.82, 
p < 0.005), but not software usage (H(2) = 3.40, p = 0.183). As there is 
no FG participants switching to other software for information search-
ing, it is obvious that the time for information searching using other 
tools in this group is significantly shorter than the other two groups. The 
pair-wise Mann-Whitney Tests also show that the FG participants spent 
significantly shorter time on circuit implementation (Mean = 13.2 min, 
SD = 7.78) than the AG participants (Mean = 24.9 min, SD = 3.05, Z =

2.84,p < 0.005) and the CG participants (Mean = 21.3 min, SD = 5.04, 
Z = 2.10, p < 0.05). There was no difference between AG and CG in 
terms of the time for information searching and circuit implementation. 
In addition, there was no significantly difference on the software-usage 
time across the three groups (AG: Mean = 11.4 min, SD = 2.75; CG: 
Mean = 11.4 min, SD = 5.78; FG: Mean = 14.9 min, SD = 4.20). 

Fig. 5. User-study task. Left: The circuit plan; Middle: The code; Right: The completed physical circuit.  
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6.4.2. Usability and user engagement 
The Kruskal Wallis Tests show that the grouping condition signifi-

cantly affects the participants’ ratings on ease to learn (H(2) = 10.73, p 
< 0.005), ease to use (H(2) = 7.13, p < 0.05), ease to correct mistake 
(H(2) = 6.92, p < 0.05), system consistency (H(2) = 10.11, p < 0.05), 
usefulness on creating physical-computing system (H(2) = 13.29, p 
< 0.005), and helpfulness on learning physical-computing knowledge 
(H(2) = 8.53, p < 0.05). One user (FG_U3) told us after the experiment 
“It is great to know that the accelerometer could be used to detect shaking in 
such a high accuracy”. Regarding the user engagement (i.e., fun, enjoy-
ment, and willingness to use in the future, etc.), the Kruskal Wallis Tests 
also show a significant difference across the three groups (Fun: H(2) =

11.28, p < 0.005; Enjoyment: H(2) = 10.37, p < 0.05; Willingness of 
Future Use: H(2) = 6.12, p < 0.05; Willingness of Recommendation: 
H(2) = 8.22, p < 0.05). 

Pair-wise comparison using Mann-Whitney U Tests (see Table 3 for 
details) show that compared to Circuito and Arduino IDE, FritzBot is 
rated significantly higher score in the ease to learn, the feature inte-
gration, the system consistency, the confident of using, the support on 
rapid prototyping, the fun and the joy of use, and the willingness for 
future use. In addition, FritzBot is rated significantly easier to use and 
correct mistakes, more useful for rapid-prototyping and learning 

physical computing, and more supportive for productivity and creativity 
than Circuito, while there is no significant difference between FritzBot 
and Arduino IDE in these aspects. 

6.4.3. Perceived workload 
The average total NASA-TLX score of the experimental group is 

20.88/60 (SD = 2.08), and the average total score of the controlled 
group is 31.63/60 (SD = 1.30). Fig. 9 shows the NASA-TLX results. 

The Kruskal Wallis Tests show that the grouping condition signifi-
cantly affects the user-perceived mental demand (H(2) = 8.92,
p < 0.05), temporal demand (H(2) = 9.01, p < 0.05), effort (H(2) =

10.9,p < 0.005), and frustration (H(2) = 11.4,p < 0.005). The pair-wise 
Mann-Whitney U Tests show that compared to the FG participants, the 
CG participants rate significantly higher in terms of mental demand 
(U = 7.00, p < 0.01), temporal demand (U = 11.50, p < 0.05), overall 
effort (U = 3.50, p < 0.01), and frustration (U = 0.50, p = 0.00). 
Similarly, the AG participants rated higher mental demand (U = 9.50,
p < 0.05), temporal demand (U = 5, p < 0.005), and effort (U = 8.00,
p < 0.05) than to the FG participants. One AG participant commented 
that “It is tiring to search how to use the components and make the 
circuit online”. As she rated herself inexperienced in physical 
computing, she had to follow the online information closely, and 

Fig. 6. Screenshot of the video demonstration, indicating three tasks for the user study.  

Fig. 7. Time spent on different subtasks/functions by AG, CG, and FG participants. The horizontal axis indicates the time in minutes.  
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frequently switch between the physical circuit and the web browser to 
make the circuit. 

The FG participants perceived better performance than the CG par-
ticipants (U = 11.50, p < 0.05). There are two CG participants 
complaint that the circuits in Circuito are too complicated to follow. 
Two other CG (CG_U1 and CG_U3) participants mentioned that they 
could figure out the logic but it is very difficult for them to program it. 

7. Discussion 

Overall, our study demonstrated that with FritzBot, users with 
limited technical knowledge are able to finish a functional physical- 
computing system efficiently. 

It is noted that the information-searching time for the FG participants 
were estimated as 0, since there was no one in this group switching to 
other tools for searching. This could be because the information- 
searching activities can be done within the FritzBot interface by chat-
ting. This assumption echos with the result that FritzBot is rated 
significantly better integrated that Circuito and Arduino IDE. This also 
lead to slightly longer software-usage time for the FG participants than 
the other two groups (FG: Mean = 14.56 min, SD = 4.20; CG: Mean =
11.13 min, SD = 5.78; AG: Mean = 10.87 min, SD = 2.75). We also 
observed that the participants in the other two groups frequently 
switched across the design/coding software, the web browser, and the 
provided documents. The tool-switching behaviors may increase the 
task-completion time. 

Furthermore, the circuit-implementation time for FG is significantly 
shorter than the other two groups (FG: Mean = 11.94 min, SD = 7.78; 
CG: Mean = 20.50 min, SD = 5.04; AG: Mean = 25.14 min, SD = 3.05). 
For the AG participants, we observe that they often switch back and 
forth between the process of physical circuit making and online infor-
mation searching. Circuito could automatically generate the circuit 
design once the participant decides which component to use. The 
automation may reduce the need of searching how to connect a specific 
component, and reduce the circuit-implementation time. On the other 
hand, we observe that seven CG participants still conduct extensive 
online and document search for which component to use before gener-
ating the circuit. In contrast, we observe that all the FG participants 
perform a clear step-by-step pattern of task completion: Step 1) Chatting 
with FritzBot for solution, Step 2) Constructing the physical circuit, and 
Step 3) Upload the generated code, and there is very few switching 
behaviors back and forth across the steps. 

The support of natural-language input received positive comments 
from the EG participants. One participant (FG_U6) commented very 
excitingly after she finish the first function: “I definitely cannot wait to 
recommend this system to my friends!”. There are two participants (FG_U4 
& FG_U5) having similar comments on “I will immediately purchase this 
system when it is available online.”. They all found it intuitive to describe 
their ideas in natural language because they do not need to care what 
components they should use and how to use them. We observe that four 
CG participants were struggling on choosing the accelerometer for 
detecting shaking. In addition, three CG participants hesitated on using 
vibration motor to generate vibration. All the participants search for the 
usage of accelerometer on the Internet. There is one CG participant 
(CG_U4) attempting to use DC motor to generate vibration, and he spent 
lots of time on searching for corresponding solutions online. In addition, 
FritzBot can robustly handle a variety of natural-language descriptions. 
During the user study, different users used different language patterns 
and phrases to describe a causal-effect relation and circuit events. 
Table 4 shows the common language patterns used by the participants 
and successfully processed by FritzBot. 

Similar to Anderson et al. (2017), we observe that four FG partici-
pants did not use the step-by-step function to finish the circuit. For those 
who used this feature, two followed the generated instructions to 
construct the whole circuit (FG_U5 & FG_U2), and another one referred 
to the step-by-step descriptions to identify the pins of the accelerometer 
(FG_U1). Participants who used the step-by-step function commented 
that the this function is useful. However, there is one participant 
(FG_U4) found that the circuit diagram is clear enough for her to follow. 
She also mentioned it would be better if the step-by-step instructions 
could “highlight the wires that she need to connect”. In contrast, we observe 
that the CG participants found that most of the online materials do not 
provide a clear circuit diagram. They needed to interpret the textual 
instructions online or the photo of the finished circuit to construct the 
circuit, which is more challenging for them. 

Although 7 of 8 FG participants could finish the task smoothly, 
FG_U6 was suffering from the error-recognition problem. His input 
contain some misspelling words and grammar errors, which could not be 
correctly recognized by FritzBot. During constructing Function#3, he 
did not include the description such as “at the same time” or “simulta-
neously”, to tell FritzBot that two input events will occur together. In 
this case, FritzBot failed to generate the code that listens for two input 
pins simultaneously. 

Fig. 8. Time spent on different activities by AG, CG, and FG participants. The horizontal axis indicates the time in minutes.  
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8. Limitations and future work 

During the user study, we identified several limitations for future 
improvement. Firstly, the performance of the BiLSTM-CRF network 
heavily relies on the scale of the training dataset. With our dataset 
derived from 152 student reports, our current prototype can correctly 
process most of the short causal-effect sentences. However, it sometimes 
fails on some complex and long sentences due to the lack of such training 
data, as our current dataset mainly contains short causal sentences. In 
addition, the current dataset only contains the textual description from 
one single ethic group. As users from different language background 
may describe their ideas differently, the current prototype may not be 

able to successfully analyze the input by another ethic group. The cur-
rent BiLSTM-CRF model somehow relies on certain specific sentence 
features. For example, FG_U6’s input doesn’t include phrases such as “at 
the same time” or “simultaneously”, making it ambiguous for the system 
to correctly identify that the two input events will happen at the same 
time. As a proof of concept, FritzBot current support 19 electronic 
components (Fig. 2). The number of supported components and circuit 
event could be extended by adding more entities in our database, 
without the need of re-training the BiLSTM-CRF model. Experts in 
physical computing, such as instructors, can also customize and expand 
the lexical database by inputting their own data. We will also collect 
more data from larger online and offline physical-computing commu-
nities for more training data in the future, to increase the generaliz-
ability of the system. For the non-physical-computing domain that can 
be described using the cause-effect relationship, the FritzBot approach 
could be adopted by constructing the new lexical database and training 
the causality-prediction model with the database from that particular 
domain. 

Secondly, we are aware of various emerging deep-learning models 
for natural language processing (NLP), specifically for name-entity 
recognition (Lothritz et al., 2020), and they may achieve better perfor-
mance then the BiLSTM-CRF model which is currently used in FritzBot. 
To this end, the BiLSTM-CRF model is designed as one replaceable 
module in FritzBot which takes the user’s sentence as input, and labels 
the input and the output events for the later process. Therefore, the 
future researchers can replace this part with the emerging NLP models. 

Thirdly, the FritzBot system currently can generate the physical- 
computing systems using Arduino only. We observed that one partici-
pant (CG_U5) finished the first function (press a button trigger a vibra-
tion) without using Arduino, which dramatically reduced the 
construction time and system complexity. In the future version, FritzBot 
will support generate circuitry without using a micro-controller if 
possible. 

Fourth, although we currently support user customization on event 
attributes, all the available attribute options are predefined. For 
example, we allow user to define the brightness of a LED, but FritzBot 
will only recognizes phrases such as bright, medium, dim, and their syn-
onyms. In our further version, we will provide more space for users’ 
customization on the corresponding components. 

Last but not the least, our user studies mainly focused on the usability 
and the user engagement of FritzBot, without specific evaluation on the 
long-term educational value. However, the participants also commented 
on the possibility of using FritzBot in the educational settings. For 
instance, FG_U2 commented that “I can learn how to use different sensors 
in FritzBot”. FG_U7 said, “I could have been more interested in physical 
computing if I could learn this course with FritzBot”. Automatic content 
generation has been widely applied in the design of intelligent tutoring 
systems, such as code generation for teaching software engineering 
(Khmelevsky et al., 2012) and algorithm design (Gavilanes et al., 2009), 
circuit generation for introductory electronic courses (Beg, 2013; Mac-
indoe et al., 2014), and so on, to enhance the student engagement in 

Table 3 
Between-group comparison on the questionnaire ratings. The numbers within 
the brackets are the standard deviations. “>” indicates significant different (p 
< 0.05), and “~” indicates no significant difference, for Mann-Whitney Test.  

Questionnaire item FritzBot 
mean 

Arduino 
mean 

CircuitO 
mean 

Between-group 
comparison 

It is easy for me to learn 
to use this toolkit. 

6.00 
(0.53) 

4.00 
(1.69) 

3.50 
(1.31) 

FritzBot >
Arduino 
∼Circuito  

I think the system was 
easy to use. 

5.88 
(0.35) 

4.75 
(2.25) 

3.63 
(1.41) 

FritzBot 
∼Arduino, 
FritzBot >
Circuito  

I found the various 
functions in this 
system were well 
integrated. 

6.13 
(0.35) 

4.75 
(1.75) 

3.63 
(0.74) 

FritzBot >
Arduino >
Circuito  

I thought there was too 
much inconsistency in 
this system. 

2.13 
(0.99) 

2.88 
(1.13) 

3.88 
(0.35) 

Circuito 
∼Arduino >
FritzBot  

I found the system very 
cumbersome to use. 

1.75 
(0.71) 

3.38 
(1.85) 

3.50 
(0.53) 

Circuito 
∼Arduino >
FritzBot  

I felt very confident 
using the system. 

6.13 
(0.64) 

3.75 
(1.98) 

3.63 
(0.92) 

FritzBot >
Arduino 
∼Circuito  

I can recover from 
wrong design easily 
with this tool. 

5.50 
(1.07) 

4.25 
(1.98) 

3.50 
(0.76) 

FritzBot 
∼Arduino, 
FritzBot >
Circuito  

I can create physical- 
computing systems 
quickly using this tool. 

6.75 
(0.46) 

4.38 
(1.06) 

4.00 
(1.07) 

FritzBot >
Arduino 
∼Circuito  

The tool is useful in 
creating physical- 
computing systems. 

6.50 
(0.53) 

5.88 
(0.83) 

4.88 
(0.64) 

FritzBot 
∼Arduino >
Circuito  

This tool is useful for 
helping me to learn 
how to create 
physical-computing 
systems. 

5.75 
(0.71) 

5.63 
(1.60) 

4.13 
(0.99) 

FritzBot 
∼Arduino >
Circuito  

Making physical 
computing with this 
tool is fun. 

6.63 
(0.74) 

4.75 
(1.67) 

4.13 
(1.46) 

FritzBot >
Arduino 
∼Circuito  

I enjoy creating 
physical-computing 
systems using this 
toolkit. 

6.50 
(0.76) 

4.63 
(1.69) 

4.13 
(1.36) 

FritzBot >
Arduino 
∼Circuito  

I became creative in 
physical computing 
with this tool. 

5.25 
(0.89) 

4.50 
(1.60) 

3.75 
(1.04) 

FritzBot 
∼Arduino, 
FritzBot >
Circuito  

I became productive in 
physical computing 
with this tool. 

6.00 
(1.28) 

4.88 
(1.19) 

4.25 
(0.99) 

FritzBot 
∼Arduino, 
FritzBot >
Circuito  

I think that I would like 
to use this system 
frequently. 

5.25 
(0.53) 

4.00 
(1.89) 

3.63 
(1.04) 

FritzBot >
Arduino ∼
Circuito   

Fig. 9. NASA-TLX Results  
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learning. For math education, Kapur suggested that intelligent problem 
posing with automatic solution generation prior to instruction plays a 
critical role in the development of conceptual understanding (Kapur, 
2018). With the loosening restriction on social distancing in the 
post-pandemic era, we plan to deploy FritzBot to a large group of stu-
dents with long-term in-class teaching and learning, to further evaluate 
FritzBot’s educational support on physical interface and product design. 

Last but not the least, our user study involved one main task/system 
tested with art and design students who are inexperienced in physical 
computing. Previous research (Lo et al., 2019) shows that expert users 
may have different behaviors in different physical-computing activities, 
compared to inexperienced users. In the future work, we plan to conduct 
more workshops of FritzBot, involving participants with different 
background, to study how FritzBot with natural-language interaction 
could facilitate different levels of physical-computing tasks and creative 
processes. 

9. Conclusion 

With the support of emerging machine-learning models, we present 
FritzBot, a conversational agent supporting novice users on creating 
physical-computing systems through natural-language interaction. The 
conversational engine of FritzBot was developed based on a BiLSTM- 
CRF neural network for identifying the input events and the output 
events phrase in users’ textual description of their ideas. FritzBot can 
extract the causal relationship from the text, identify the input and the 
output components, and generate the corresponding circuit and code 
along with the construction guidelines. Our user study shows that 
compared to the circuit-autocompletion software available in the com-
mercial market, FritzBot significantly shortens the time spent and the 
perceived workload for novice users on tasks of physical-computing 
system design and prototyping. While this initial implementation is 
capable to support various circuit components and behaviours, the 
concept that we present could be extended to support other hardware 
platform with more data. 
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