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EFRing: Enabling Thumb-to-Index-Finger Microgesture Interaction
through Electric Field Sensing Using Single Smart Ring
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Fig. 1. (a) The EFRing prototype, (b) The multi-layer structure of EFRing, (c) EFRing is able to recognize discrete gestures,
such as tapping the thumb on the index finger as a virtual button, (d) EFRing is able to recognize the continuous motion,
such as sliding the thumb on the index finger as a virtual slider. (e)(f)(g) show EFRing ’s potential applications on Cardboard
VR interaction and 2D sketching task.
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We present EFRing, an index-finger-worn ring-form device for detecting thumb-to-index-finger (T2I) microgestures through
the approach of electric-field (EF) sensing. Based on the signal change induced by the T2I motions, we proposed two machine-
learning-based data-processing pipelines: one for recognizing/classifying discrete T2I microgestures, and the other for tracking
continuous 1D T2I movements. Our experiments on the EFRing microgesture classification showed an average within-user
accuracy of 89.5% and an average cross-user accuracy of 85.2%, for 9 discrete T2I microgestures. For the continuous tracking of
1D T2I movements, our method can achieve the mean-square error of 3.5% for the generic model and 2.3% for the personalized
model. Our 1D-Fitts’-Law target-selection study shows that the proposed tracking method with EFRing is intuitive and
accurate for real-time usage. Lastly, we proposed and discussed the potential applications for EFRing.

CCS Concepts: • Human-centered computing→ Gestural input; Interaction devices.

Additional Key Words and Phrases: gesture input, sensing technique, machine learning
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1 INTRODUCTION
Thumb-to-index-finger (T2I) microgesture interaction [8, 21, 83], such as tapping, rubbing, and circling with
the thumb on the index finger, has shown a wide range of benefits for natural [21], efficient [34], and privacy-
preserved [8, 83] input. It can be applied to text input [77, 82, 83], mobile interaction [21, 85], drone controlling
[84], Internet of Things (IoT) [13], and AR/VR interaction [47]. Thumb gesturing on the index-finger pad is akin
to operating a touchable surface (e.g. touch screen) on the index finger. Compared with performing gesture in the
mid air [33, 41] or on other large surfaces [11, 45], T2I microgesture interaction could potentially support more
light-weight and private interaction with less physical demand.
Attracting increasing research interest in recent years, detecting T2I microgestures is considered to be a

challenging problem due to the small range and the occlusion problem of thumb motion [21]. Recent researches
have proposed to use different sensors and recognition methods to support such type of inputs, including
millimeter-wave radar [25, 48, 76], front-facing passive infrared (PIR) sensors [21], RGB Camera [7], on-thumb
motion sensors [47, 49, 87], magnetic sensors [8], and touch-sensitive foils [61, 77, 82, 83]. Among these existing
solutions, the finger-worn devices and sensors (e.g., ring-form and nail-mounted devices) [13, 21, 34, 47, 76, 82,
83, 85, 87] are more flexible with higher social acceptance, compared to the glove-like hand-worn devices [61, 77].
While there exists ring-form solutions for detecting thumb gestures [47, 49, 87], they are mostly worn on the
thumb. However, thumb-worn rings and accessories could be less common in our daily life, compared to the
rings worn on the index fingers [44].
In this paper, we present EFRing, an index-finger-worn ring-form devices for recognizing and tracking T2I

microgestures using the electric-field (EF) sensing technique. Our experiments demonstrated that the EF signal
could be captured in a high sampling rate (∼200 Hz) and sensitive to the subtle thumb movement without
requiring additional instrumentation on the thumb. EFRing detects the thumb movement by emitting an electric
field, which would be distorted if a conductive object (e.g., human thumb) approached. The distortion of the
electric field could be used for inferring the status of the thumb movement, such as the type of the thumb gesture
and the position of the thumb. With EFRing, we design a machine-learning-based recognition pipeline to detect
discrete and continuous T2I microgestures. To evaluate the EFRing’s feasibility of detecting discrete thumb
microgestures, we selected 9 T2I microgestures based on the literature and the user preference. Through our
experiments with different classification methods, we showed that the signals captured through EFRing could be
classified to recognize the selected T2I microgestures in an average within-user accuracy of 89.5% and an average
cross-user accuracy of 85.2%. We further investigated the feasibility of EFRing for tracking continuous 1D T2I
motion using a regression-based pipeline. That is, mapping the EFRing signals to the continuous 1D positions
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of the thumb while sliding on the index finger. The offline experiment showed a mean-square tracking error of
3.5% for the generic model and 2.3% for the personalized model. We also conducted a 1D-Fitts’-Law user study to
evaluate the real time performance and the user experience of the system. The result showed that with EFRing,
our participants could perform the 1D-target-selection, achieving a similar performance on 1D target selection
on the touch screen in the previous research. The usability questionnaire further shows that the continuous T2I
tracking system with EFRing is easy to use with high accuracy. The data set, together with the source code, and
the hardware-design documents are available online. 1

We summarize our contributions as follows:
• We developed EFRing, a ring-form device for capturing the EF signals induced by the TI2 microgestures.
Compared to the existing works which either require the devices to be worn on the thumb or need multiple
devices on different fingers, we only require one ring worn on the index finger.

• We developed a set of machine-learning-based signal-processing pipelines to recognize discrete T2I microges-
tures and track continuous T2I motion with EF data recorded by EFRing.

• We evaluated the proposed EFRing hardware and the signal-processing algorithms by thorough experiments
and user evaluations.

• We demonstrated a set of proof-of-concept applications that could be supported by EFRing.

2 RELATED WORKS

2.1 Thumb-to-Finger Gesture Recognition
Gesture-based interaction is an important component of the graphical interactive system that supports a natural
input. Extensive researches focus on whole-hand tracking and gesture recognition using various types of sensors,
such as RGB cameras [69, 75, 80], RGBD camera [41, 58], monochrome camera arrays [29], thermal camera [33],
etc.), capacitive sensor array [1, 19], EMG sensors [42, 51, 89], and magnetic field sensors [10]. However, it may
be still non-trivial to directly apply these solutions for T2I microgesture detection, as the small-range thumb
motion could be occluded or could not arouse large enough sensor signal.

As one of the emerging input methods in recent years, T2I microgesture could provide a light-weight and private
interaction paradigm with low physical demand. Previous researches make attempts to enable T2I interaction
through different technologies, such as magnetic sensing [8], radio wave [25, 48, 76], infrared sensing [21],
acoustic sensing [88], capacitive foils [61, 77, 82, 83], and marker-based AR tracking system [34]. Capturing the
thumb movement is not trivial due to the small range and the occlusion of finger motion. One direct solution is
utilizing thumb-mounted motion sensors to track the thumb movement [47, 49, 87]. To achieve a similar goal of
capturing thumb movement, Chan et al. [8] mounted a magnet on the thumbnail to sense the thumb movement
with a Hall sensor attached on the index finger. Instead of mounting sensors on the fingers, the relative movement
between the thumb and the index finger could also be captured by an external front-facing device. The Soli
project [25, 48] detects the whole-hand gestures through an active radar-sensing system. Utilizing Soli, Wang
et al. [76] proposed a CNN+LSTM-based method for recognizing two T2I gestures (i.e., rubbing and sliding)
with an average accuracy of 87%. Gong et al. [21] proposed Pyro, a passive sensing system using infrared signal
for recognizing 6 T2I microgestures. Their SVM-based classifier shows a within-user accuracy of 84.9% and a
cross-user accuracy of 69.0%.
Although the aforementioned works offer solutions for detecting subtle hand/finger gestures in different

contexts, there are still some limitations and challenges that worth to be addressed. For example, Soli and Pyro
require users to perform their gestures in front of the external sensors, which may restrict the gesture flexibility
and the availability of gesture sensing in the mobile context. Directly mounting these sensors on users’ bodies
may suffer from the sensor signal occlusion problem. The methods that require users wearing glove [61, 77] may
1https://github.com/taizhouchen/EFRing

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 4, Article 161. Publication date: December 2022.



161:4 • Chen et al.

suffer from system bulkiness. The finger-worn capacitive sensor foils [82, 83] require direct touching, thus, it
may restrict the interaction area on the device surface only. The ring-form sensing device that can be worn on
the finger potentially provides a mobile and wearable solution for T2I microgesture interaction. In our work,
with EFRing, users wear one ring device on the index finger only, and it supports both discrete T2I microgesture
recognition and continuous T2I 1D-motion tracking.

2.2 Ring-Form Interactive Devices
Finger-worn ring-form devices are usually lightweight with high social acceptability [50] to support always-
available interaction. Researchers have proposed various types of ring-form wearable devices for both input
[7, 39, 47, 60, 79, 87] and output [36, 37, 63, 91].

As the input devices, smart ring-form devices have been used for hand-gesture recognition [7, 78, 79], on-ring
touch interaction [5, 13, 70], thumb-movement detection [71, 87], and hand-gesture interaction on the other
surfaces [26, 39, 50, 65]. As one pioneering work on finger-worn devices, Masaaki Fukumoto and Yasuhito
Suenage [17] proposed a full-time wearable interface named “FingerRing", which senses typing shocks of five
fingers with the finger-worn accelerometers. They firstly proposed the concept of “Full-time Wearable Interface"
to demonstrate the advantage of small wearable device (e.g., finger ring) that allows always-available interaction
without complicating daily life. Wilhelm et al. developed eRing [79] to recognize twelve whole-hand postures
using electric-field sensing with a 1-Nearest-Neighbor classifier, achieving an average accuracy of 90%. Perisense
[78] classifies eight whole-hand postures in an average accuracy of 98% through electric-field sensing with an
IMU.

FingerSound [87] leverages a thumb-mounted ring device consisting of a gyroscope and a contact microphone
to detect the thumb gestures performed on the palm. It recognizes 10 uni-stroke digits and 28 Graffiti gestures
using K-Nearest-Neighbor (KNN) model. Recently, Liang et al. [47] proposed DualRing, a finger-worn ring-form
device to capture the state and the movement of the user’s hands and fingers by two motion-sensor-embedded
rings wearing on the index finger and the thumb, respectively. Kienzle et al. [40] developed ElectroRing, an
index-finger-worn ring that robustly detects the binary T2I pinch by coupling a high-frequency AC circuit. Shi et
al. [65] proposed a simple but robust sensing approach to detect if the index finger is contacted with a surface
using one motion sensor attached on the index fingernail. Chan et al. [7] developed Cyclopsring to detect full hand
gestures through a ring-mounted fisheye-lens RGB camera. Moreover, several researches [2, 5, 13, 32, 70] have
explored detecting gestures that are performed directly on the ring device. Darbar et al. [13] developed RingIoT,
a smart ring integrated with a motion sensor, a capacitive touch pad, and an IR emitter for Internet-of-Things
(IoT) devices control. RingIoT senses the finger pointing direction by the built-in motion sensor and detects the
on-ring gesture-based commands using the touch pad. Tsai et al. [70] and Boldu et al. [5] explored detecting five
on-ring gestures using a capacitive touch-sensor array.

In our work, EFRing focused on T2I microgrestures, while the existing works studied either large finger gestures
(e.g., FingerSound) or whole-hand postures (e.g., eRing, Perisense). Compared to eRing (10Hz) and Perisense
(100Hz), EFRing could achieve a higher sampling rate of 200Hz, and require fewer types of sensors than Perisense.
FingerSound [87] with the thumb-worn IMU-based ring focused on the large thumb-to-palm gestures, but it may
not work for microgesture due to the low sensitivity of IMU. Furthermore, with EFRing , we achieved continuous
T2I 1D-motion tracking which was missed in the existing works. For the existing works which required the ring
devices to be worn on the thumb which may not be common for ring wearing [44], EFRing offers a solution for
the people who prefer the index-finger rings. For those with the ring devices being worn on the index finger,
mostly on the proximal phalanx, only on-ring interaction is supported, though the previous surveys show that the
finger-pad surfaces are more preferred for microgesture interaction [34]. In addition, direct on-ring interaction
could potentially cause discomfort [64]. In our presented work, the user wears the EFRing on the proximal
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phalanx of his/her index finger which is a more common and comfortable possible of ring wearing [44], and
he/she performs the T2I microgestures on the pad surface of the index finger.

2.3 Sensing with Electric Field
Early in 1995, Zimmerman et al. [92] proposed a taxonomy of electric-field sensing mechanism by categorising
the sensing principle into two operating modes: shunt mode and transmit mode. Over the following two decades,
many researches [24] have focused on electric-field sensing to support a wide range of human-computer-
interaction tasks such as hand-gesture recognition [15, 22, 23, 62], body-posture detection [3, 12], dynamic
activity recognition [59], mobile-phone interaction [20], smart-watch interaction [90], and smart furniture [92].
Specifically, J. Rekimoto [62] developed a wrist band incorporated with 7 electrodes and one tilt sensor for
hand-gesture detection. Smith et al. [67] proposed a seminal approach that leverage the electric-field sensing
mechanism for graphical user interface (GUI) control using mid-air gesture. Grosse-Puppendahl Tobias and
Braun Andreas [23] proposed to use an array of capacitive proximity sensors with the combination of frequency-
and time-multiplexing algorithms for hand-gesture detection and object recognition. Goc et al. [20] developed
a transparent electric-field sensor to support 3D in-air gestures for mobile-phone operation. Zhou et al. [90]
proposed AuraSense, an electric-field sensing system for detecting 8 around-watch hand gestures using a SVM
classifier, achieving averagely 82.8% accuracy. Recently, Bello et al. [3] developed MoCapaci to sense upper body
postures by an in-garment electric-field sensing system incorporated with an CNN-based recognition algorithm
with an average accuracy of 86.25% for 20 postures.

EFRing is largely inspired by the aforementioned related works of electric-field sensing for human-computer
interaction. We specially focus on recognizing the thumb-to-index finger-microgestures using electric field
sensing mechanism, and designing and implementing the solution on the form factor of finger ring.

2.4 Summary
Table 1 summarises seven most related works in the scope of our research. The works with higher accuracy or
larger number of gestures either focused on the larger-motion thumb-to-palm or full-hand gestures (i.e., Soli
[25, 48], FingerSound [87], eRing [79]), or required more devices to be worn on both the thumb and the index
finger (i.e. DualRing [47]). To the best of our knowledge, there are no existing works that support sensing both
discrete and continuous T2I gestures with an index-finger-worn ring which EFRing specifically focused on.

3 EFRING: SENSING PRINCIPLE, DESIGN, AND FABRICATION
In this section, we present in details the investigation of the EF-sensing technology around the index finger for
detecting T2I microgestures. In our current stage, we mainly focused on the situation of the device being worn
on the index finger, due to three main reasons: 1) the index finger was the most common finger for wearing
the interactive ring devices in the existing works [74]; 2) the index finger is the closest finger to the thumb, so
theoretically the device worn on the index finger could yield better EF signal than that being worn on the other
non-thumb fingers; 3) compared to the situation of the device worn on the other non-thumb fingers, it is easier
for the thumb to reach the device on the index finger, thus potentially facilitating the on-ring interaction, such as
button [2] and touch-pad clicking [5, 70]. We chose EF as the sensing technology mainly due to its potentially
high sensitivity, while the other types of sensors (e.g., optical-proximity, ultrasonic, and RF-based sensors) are
relatively too bulky to be integrated in a small ring form-factor. Camera could be easily affected by the lighting
condition. Based on the technical investigation of EF sensing, we will discuss the design and the making of
EFRing.
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Table 1. Summary of comparison with previous works

Sensors Gesture Types
Gesture
Number

Accuracy Form-Factor

Pyro [21] PIR sensor T2I gestures 6
With-in user: 84.9%
Cross-user: 69.0%

Non-wearable

Soli [25, 48] Radar Full-hand gestures 11 Accuracy:87.2% Non-wearable

Thumb-in-motion [5] Touch film On-ring gestures 5
F1 score: 86.9%
Recall: 89%

Index-finger ring

DualRing [47]
IMU
+electrode

T2I gestures 4 Accuracy:99.4%
Index-finer ring
and thumb ring

FingerSound [87]
IMU
+Microphone

Thumb-to-palm
gestures

28 Accuracy:92.5% Thumb ring

eRing [79] EF Full-hand postures 6 Accuracy:97% Index-finger ring
Perisense [78] EF+IMU Full-hand postures 8 Accuracy:88% Index-finger ring

Fig. 2. The illustration of a circuit model for electric-field sensing system.

3.1 Sensing Principle
In general, electric field sensing is based on a principle that any charge-carrying surface (e.g., electrode) can
generate an electric field, which will be distorted if any conductive object (e.g., finger) approaching [73]. As shown
in figure 2, an electric-field sensing system usually consists of three layers: the receiver layer (Rx), the transmitter
layer (Tx), and the ground layer (GND). A transmitter layer is usually driven by a low-voltage alternating-voltage
(AC) signal (115kHz, 3Vpp square wave for EFRing), and the receiver layer will detect the transmitted AC signal
through the capacitive path between the transmitter electrode and the receiver electrode. When a person’s hand
or finger intrudes the electrical field, the low-frequency energy will be capacitively coupled into the human body.
Since the human body is much larger than the size of the electrode, the portion of the human body that is out of
the field serves as another charge reservoir [92]. In other words, the coupling of the human body would cause the
change of the capacitance of the whole system. Such changes could be processed to track the body movements
and classify the movement patterns.
Based on the aforementioned principle, we implemented a multiple-receiver electric-field sensing system for

EFRing to enrich the sensing resolution for detecting the subtle finger movement. EFRing detects the thumb-to-
index finger movement by generating an electric field around the ring-worn position around the index finger. If
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the relative movements between the thumb and the index finger occurred, the system capacitance will change,
and the output voltages from the receiver electrodes will also change correspondingly. Given an input voltage as
𝑉𝑖 to the Tx, the output voltage 𝑉 𝑘𝑜 from the 𝑘𝑡ℎ Rx is formulated by [57]:

𝑉 𝑘𝑜 = 𝑉𝑖 ×
𝐶𝑘𝑟𝑡

𝐶𝑘𝑟𝑡 +𝐶𝑘𝑟𝐺 +𝐶𝑘
𝑟𝐻

(1)

where 𝐶𝑘𝑟𝑡 is the capacitance between the 𝑘𝑡ℎ Rx and Tx, 𝐶𝑘
𝑟𝐺

is the capacitance of the 𝑘𝑡ℎ Rx to GND, 𝐶𝑘
𝑟𝐻

is the
capacitance between the 𝑘𝑡ℎ Rx and human finger. In practice, we normally implement the input voltage 𝑉𝑖 as a
square wave AC signal generated by an oscillator. For more details, please refer to the IC data sheet [57].
The capacitance 𝐶 (in Farads) between two electrodes is given by

𝐶 = Y𝑟Y0
𝐴

𝑑
(2)

where𝐴 is the overlapping area (in square meters) between the two electrodes, 𝑑 is the relative distance (in meters)
between the electrodes, Y𝑟 and Y0 are relative permittivity and vacuum permittivity respectively. Y0 is normally
treated as a constant value according to Glauser et al. [18]. Y𝑟 is usually affected by the material permittivity
and the vacuum permittivity. Therefore, in our case, Y𝑟 is also a constant value since all the insulation layers
on EFRing are fabricated with the same type of resin in our implementation. Combining Equation 1 and 2, we
can see the generated electric field could be affected by 𝐴 and 𝑑 mainly, which means that the placements of
the transmitter and the receiver electrodes would affect the sensing range of the system. In the actual hardware
implementation, the relative positions between the Rx(s), the Tx, and GND usually don’t change. Thus, given
equation 2 and equation 1, we have

𝑉 𝑘𝑜 ∝
𝑑𝑘
𝑟𝐻

𝐴𝑘
𝑟𝐻

(3)

indicating the output voltage 𝑉 𝑘𝑜 from the receivers Rx(s) changes proportionally to the distance between the
finger and Rx(s), and changes inversely proportional to the overlapping area between them. Therefore, it is
reasonable to hypothesize that the change of 𝑉 𝑘𝑜 may potentially reflect the movement pattern of the thumb
which could indicate the type of the T2I gestures. We further verify our hypothesis with a serial of experiments
in Section 5 and Section 6.

3.2 Designing and Making EFRing
For EFRing, we aim to build a lightweight ring device that is comfortable to wear, and the ring needed to be
flexible for fitting different finger sizes. Figure 1b illustrates the decomposition of our final design of EFRing.
We design a multi-layer structure to construct the antenna. The key components of EFRing are the Rx, the Tx,
and the GND layers, which are made of thin-film conductive fabric and produced by the laser cutter. The top
three insulation layers are fabricated using a SLA 3D printer, and the bottom one is made by thin-film polyvinyl
chloride (PVC). For the Rx antenna layout, we placed five thin-film antenna to cover a sensing angle range of
120◦ (Fig. 3) in the receiver layer, to maximize the range of the received signals. Noted that the current antenna
layout is in 1-dimensional. We didn’t use the 2D antenna layout as it would reduce the size of the individual
antenna and shorten the distance between two adjacent antennas. Smaller antenna and more dense antenna
layout may lead to the interference among the antennas, and would potentially affect the sensing capability of
the system [31]. While the antenna design could be further optimized, it is out of our scope in the current stage.

One challenge of constructing EFRing is to properly connect Tx and Rx(s) into the circuit meanwhile preventing
short circuit between them within a small compartment. The connection should also be unobtrusive to reduce the
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external interference over the electric field. To this end, we use five 0.1mm-thin enameled wires to connect the
five Rx(s) to the copper electrodes. For each enameled wire, we use two micro magnets to ensure its proper contact
with the antenna. Our pilot test shows that the intrusion of micro magnets would cause a constant interference
on the generated electric field in EFRing. Such constant interference could be eliminated by calculating the
derivative of the temporal signal, as proved by previous works [46, 87].

Fig. 3. Cutaway view of EFRing. The Rx(s) are covering a sensing angle range of 120◦, while each of them is covering a range
of 20◦.

To capture the electric-field signal, we customize a PCB board based onMicrochip MGC3130 which is connected
to the antennas on EFRing. The circuit was referred to the reference schematic as suggested by the MGC3130
data sheet [57]. We configure the transmitter to generate an electric field using a 115kHz, 3V square wave. The
chip also monitors each of the Rx electrodes to measure the voltage attenuation at a sample rate of 190Hz. The
measurements were output through the 𝐼 2𝐶 protocol to a USB bridge [56] to communicate with a PC.

4 PILOT EXPERIMENT: OPTIMIZING THE DEVICE ORIENTATION
Ring is often considered to be omnidirectional while being worn. To this end, we first conducted a pilot experiment
to investigate the signal quality under different wearing orientations. Equation 2 shows that 𝐴 and 𝑑 are two key
factors that affect the quality of the electric-field signal. Figure 4 shows illustrations under three different wearing
orientations: 0◦, 45◦, and 90◦, resulting in different antenna directions (the light blue regions in Figure 4). The
antenna orientation affects the change of 𝐴 and 𝑑 between the thumb and the antenna while users performing
T2I microgestures. Therefore, there is a need for finding a suitable wearing angle for EFRing to capture sufficient
information of the thumb movement.
To optimize the quality of the EF signal for EFRing, the wearing orientation needs to satisfy two criteria: 1)

The signal profiles are distinguishable across a variety of T2I microgestures, and 2) the signal profile for each
unique gesture is stable across different users.

As our T2I gestures were performed on the YZ-plane (Fig. 4), we could interpret that, according to Equation. 4,
if we move the thumb along the Y axis, the projection 𝐴 on the antennas (light blue area) would change. If we
move along the Z axis, the distance 𝑑 between the thumb and the antennas would change. Compared with 0◦ and
45◦, the antenna area under 90◦ covers the YZ-plane the most, allowing more antennas to catch the changes of 𝐴
and 𝑑 which lead to the change of output voltage induced by the thumb movement. Therefore, we anticipated
that 90◦ is the optimal wearing orientations for our task. To further verify this anticipation/hypothesis on the
angle setting, we adopted a data-driven approach to investigate the signal quality under different ring-wearing
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Fig. 4. Three chosen device orientations for our pilot experiment. The light blue areas indicate the placement of the Rx(s)
antennas.

orientations. Specifically, we collected the antenna signals of different users wearing EFRing and performing a
set of selected T2I microgestures, and analyzed the collected signals in high dimensional space.

4.1 Data Collection
We recruited 3 participants (2 males, 1 female, mean age = 24.67, SD = 2.08) from a local university through
words of mouth. All of them are right-handed without any prior experience on smart ring. The participants
were instructed to wear EFRing on the proximal phalanx of their index fingers in three different angles. Under
each wearing angle, the participants performed 10 pre-selected thumb-to-index finger gestures (see Section. 5.1
for details). During the recording of each gesture, the participants were told to perform the gestures within 1.2
seconds with a rolling animation shown on the screen as the time indicator. For each gesture under each wearing
angle, we recorded 100 samples from each participant. Participants were required to take off the ring and take it on
again after every 10 recordings to increase the data variance. The recording order of angles was counter-balanced
across three participants, and the order of the gestures under each angle was randomly shuffled. To record the
data, we connected EFRing to a laptop (Window 10, Intel Core i5, 16GB RAM) through USB connection in a sample
rate of 190Hz. We developed the data-recording interface using Qt5.6 in C++. After removing the corrupted data
due to software and hardware error, we recorded 6993 gesture samples in total, with 2112 for 0◦, 2304 for 45◦,
and 2577 for 90◦.

4.2 Data Analysis and Results
Based on the criteria of the optimal wearing angle described in Section 4.1, we define the signals of each gesture as
one cluster, and focus on the between-clusters dispersion and inter-cluster dispersion of the signals for each angle.
Specifically, for a specific wearing angle, a better gesture distinguishability leads to a larger between-clusters
dispersion in the latent space, while a good feature stability across different users precipitates a small inter-cluster
dispersion in latent space. Specifically, we calculated Calinski-Harabasz Index [6] to indicate the between-clusters
dispersion and inter-cluster dispersion of the microgesture signals. Given a between-clusters sum of square 𝑆𝑆𝐵𝐺
and a inter-cluster sum of square 𝑆𝑆𝑊𝐺 , the Calinski-Harabasz Index 𝐶𝐻 is given as:
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𝐶𝐻 =
𝑆𝑆𝐵𝐺

𝐾 − 1
/ 𝑆𝑆𝑊𝐺

𝑁 − 𝐾 (4)

where 𝐾 is the total number of clusters, and 𝑁 is the total number of samples. With the ground truth cluster
label for each gesture sample in the latent space feature point, 𝑆𝑆𝐵𝐺 and 𝑆𝑆𝑊𝐺 can be calculated as:

𝑆𝑆𝐵𝐺 =

𝐾∑︁
𝑘=1

𝑛𝑘 ∥𝑐𝑘 − 𝑐 ∥2 (5)

𝑆𝑆𝑊𝐺 =

𝐾∑︁
𝑘=1

∑︁
𝑥 ∈𝐶𝑘

∥𝑥 − 𝑐𝑘 ∥2 (6)

where 𝑘 represents the 𝑘𝑡ℎ cluster, 𝐶𝑘 is the set of points in 𝑘 , 𝑐𝑘 is the cluster center of 𝑘 , and 𝑛𝑘 is the number
of points in 𝑘 . 𝑐 is the center of all sample in the space. The value of Calinski-Harabasz Index is proportional to
the between-clusters dispersion and inversely proportional to the inter-cluster dispersion, which could indicate
the signal quality under a specific wearing orientation.
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Fig. 5. The illustration of our auto-encoder model. The model was trained to reconstruct the input signal. After training, we
extracted the latent feature as a low-dimensional representation of the input signal for further analysis.

The 𝐶𝐻 value could be computed using different forms of cluster features, such as the hand-crafted statistical
feature vectors and the latent feature vectors extracted by auto encoders. As the hand-crafted statistical features
may be directly affected by noise, we adopted the auto-encoder approach for feature extraction. Specifically, we
train a CNN-based encoder-decoder model for self-reconstructing the collected raw signals in time series. The
latent feature vector was used as a low-dimensional representation of the signal for 𝐶𝐻 calculation.
The auto-encoder-decoder model (Fig. 5) consists of 6 2D convolutional layer for the encoder and 6 2D

transposed convolutional layer for the decoder. Here we consider the 2D convolutional structure over the 1D
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Fig. 6. Illustration of the initial gesture set and their corresponding user rating. Ease is a short of ease to perform, while
SocialAcc is a short Social acceptance. The rating score of Fatigue is subtracted by 7. Gestures with the light green background
indicate the final gesture set.

model, as the 2D model could extract the channel-wise features which could be potentially helpful. The model
takes the original 1-second time-series signal as input, and regenerate the signal sequence as output. We calculated
the mean-square error as the reconstruction loss during training. The size of the latent-space feature vector is 32.
The model was trained on a desktop PC with dual RTX 2080 NVIDIA GPU, 32GB RAM, and one Intel i7-8700 CPU.
We used an Adam optimiser [43] (𝛽1 = 0.9, 𝛽2 = 0.999) with the learning rate of 1𝑒 − 5 for model optimization.
Our implementation was based on PyTorch 1.10 with Python 3.8. For each auto-encoder model, we train for 128
epoch in a batch size of 16. The result suggests the𝐶𝐻 value of 90◦ (55.04) outperforms the other two angles (45◦:
36.13, and 0◦: 24.12). As a result, we finalized 90◦ as the device-wearing orientation of EFRing for the following
experiments.

5 DISCRETE SUBTLE THUMB-TO-INDEX FINGER GESTURES
In this section, we investigated the feasibility of EFRing for recognizing discrete T2I microgestures. Here we
define the discrete gesture as a gesture that is completed with a sequence of motions (e.g., drawing a circle) and
could be mapped to a specific command/event. We first selected a set of T2I microgestures with the consideration
of user preference. Then, we proposed and experimented a machine-learning-based signal-processing pipeline
for gesture classification.

5.1 Gesture Selection
We first summarized an initial gesture set from existing literatures on thumb-to-fingers microgesture interaction
[21, 74]. Specifically, we pick 6 unistroke thumb-to-index finger gestures (Tap, Double Tap, Swipe Up, Swipe Down,
Swipe Left, Swipe Right) from a recent work on ring-based gesture literature review [74], and 3 gestures (Triangle,
Check, Counterclockwise Circle) from [21]. To maintain the design consistency, we add one more gesture(Clockwise
Circle) in to the gesture set. As a result, we built up the initial gesture set with 10 T2I microgestures as shown in
Fig. 6. Following the previous works on gesture design and selection [11, 81], we then conducted a focus-group
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survey on the user preference toward 10 gestures in our initial gesture set, to narrow down the focus of T2I
microgesture set.

5.1.1 Participants and Procedure. Through the word of mouth, we recruited 16 participants (8 males and 8
females) with the average age of 25.8 years old (SD=2.40). All of them are right-handed, without any experience
of smart ring. The experimenter began the survey by asking the participant to fill a pre-questionnaire with
demographic information, and the participants wore EFRing on the proximal phalanx of their index fingers. In
addition, the participants were introduced to the whole set of the gestures before the survey formally started.

During the survey, the experimenter randomly showed a gesture illustration (Fig. 6) to the participant and ask
them to perform the gesture several times until they felt they can perform the gesture correctly without looking
at their fingers. We then asked the participants to rate each gesture according to three criteria along a 7-point
Likert-scale (1: strongly disagree to 7: strongly agree):
• Ease to perform: “It is easy to perform this gesture precisely.”
• Social acceptance: “The gesture can be performed without social concern.”
• Fatigue: “The gesture makes me tired.”

The participants were also invited to discuss the rationale behind their ratings, and the verbal discussion was
recorded.

5.1.2 Result. A multi-factorial repeated-measures ANOVA was performed on the ratings of ease to perform,
social acceptance, and fatigue. The results showed a significant effect of the gesture type on the ratings of ease
to perform (F(9,135) = 13.87, p < 0.005, [2𝑝 = 0.48), social acceptance (F(9,135) = 6.01, p < 0.005, [2𝑝 = 0.286), and
fatigue (F(9,135) = 11.82, p < 0.005, [2𝑝 = 0.441). For each criteria under each gesture, we calculate the average
score across different user. Fig. 6 shows the descriptive results of the average ratings for each gesture. We selected
the gestures whose three ratings were all above 5 as suggested by previous works on preference-based gesture
selection [11, 81]. As a result, this selection process eliminated only one T2I microgesture: Triangle, leaving 9
gestures as highlighted in light green background in Fig. 6.

5.2 Machine-Learning-based EFRing Gesture Classification
After finalizing the gesture set, we experimented with the feasibility of EFRing for recognizing the gestures
through a machine-learning-based approach. We first construct a data set of the EFRing signals for the selected
gestures. Then we propose a deep-learning architecture to process multi-channel EFRing signals for classifying
the selected discrete gestures.

5.2.1 Data Acquisition. We recruited 16 participants (8 males, 8 females, mean age = 25.50, SD = 2.98) from a
local university for data collection. All of them are right-hand dominant without any prior experience of smart
ring. The setup of the data acquisition for the selected gestures was similar to the pilot experiment (Section
4.1). Additionally, we divided the data-collection process into two parts for each participant. During part one,
participants were asked to repeat each gesture 40 times until he/she finish all gestures in the random order. We
treated the part-one data as our training data. We also asked him/her to take off the ring and take it on again after
every 10 times of recording, to increase the data variance. In part two, participants were asked to repeat each
gesture 10 times, and the gestures were shuffled randomly. We treated the data recorded in part two as testing data.
During the data collection, We did not strictly control the participants’ ring-wearing angles. Instead, we softly
told the participants the desired wearing angle of 90◦, and they wore the ring based on their own perception. This
was to further ensure the variety of the data. Similar to Chen et al. [11], during the recording of each gesture, the
participant first saw a 3-second count-down on the screen, followed by a 1-second decreasing circular progress
bar for performing the gesture. The whole experiment took about 40 minutes for one participant. In the end, two
users’ data were disgarded because of the accidental hardware failure (i.e. the unexpected disconnection between
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the enameled wires and the receiver antenna). As a result, we collected 6095 valid gesture samples, consist of
4832 training sample and 1263 testing sample.

5.2.2 Data Representation and Processing. We denote one measurement frame from EFRing at timestamp 𝑡 as
𝑥𝑡 = [𝑉 1

𝑡 ,𝑉
2
𝑡 ,𝑉

3
𝑡 ,𝑉

4
𝑡 ,𝑉

5
𝑡 ]𝑇 , where𝑉 𝑛𝑡 represent the output voltage measured from the 𝑛𝑡ℎ channel (i.e Rx) at 𝑡 . We

denote a gesture sample containing N measurements as 𝑋 = {𝑥𝑡 }𝑡 ∈{0,...,𝑁−1} ∈ R(5×𝑁 ) . In our experiment, we set
𝑁 to 190, which is 1 second under the sample rate of 190Hz.
For every gesture sample in our data set, we first removed 19 frames (0.1 seconds) from the head and the

tail respectively to eliminate the noisy measurement occurred while activating and terminating the recording
program. We then applied the operation Fourier re-sampling on every channel to make sure the sample length is
190 after removing the head and the tail. Lastly, we applied a low-pass filter with the cut-off frequency of 80Hz to
remove the potential high-frequency random noise signal generated by the circuit. The value of 80Hz for the
cut-off frequency was determined as it achieved the highest SNR (Fig. 7) in our empirical experiments where we
tested various cut-off frequencies ranging from 50Hz to 94Hz.

Fig. 7. The average signal-to-noise ratio (SNR) on our data set after applying the low-pass filter with different cut-off
frequencies ranging from 50Hz to 94Hz. The x axis is the cut-off frequencies, and the y axis is the SNR after low-pass filtering.
The best cut-off frequency was yielded by the cut-off frequency of 80Hz, with the highest SNR of 50.34.

5.2.3 Feature Extraction. For the gesture-classification task using EFRing, we observed a spatial correlation
between each pair of Rx channels that could be potentially helpful for the classification-model training and
testing. We encode such relationships by pre-computing the pairwise gradient between any two Rx channels. For
the pair of the 𝑖𝑡ℎ and the 𝑗𝑡ℎ channels (𝑖, 𝑗) at time stamp 𝑡 , we compute their channel-wise gradient as:

Δ𝑉 𝑡(𝑖, 𝑗) =
𝑉 𝑡𝑖 −𝑉 𝑡𝑗
|𝑖 − 𝑗 | (7)

All the channel pairs (𝑖, 𝑗) in a gesture sample 𝑋 are denoted with 𝑃𝑐 . We compute Δ𝑉 𝑡(𝑖, 𝑗) for every pair in 𝑃𝑐 for
every time stamp to form a new feature set: 𝑑𝐶 (𝑋 ) = {Δ𝑉 𝑡(𝑖, 𝑗) |𝑡 ∈ {0, ..., 𝑁 − 1}, (𝑖, 𝑗) ∈ 𝑃𝑐 } ∈ R(10×𝑁 ) . Apart from
computing channel-wise gradient, we also take the signal’s temporal gradient: 𝑑𝑇 (𝑋 ) ∈ R(5×𝑁 ) as the previous
gesture-classification works [46, 87] did. We combine the channel-wise gradient and the temporal gradient as our
final feature set: 𝑑𝐶 (𝑋 ) ∪ 𝑑𝑇 (𝑋 ), ∈ R(15×𝑁 ) . We then conducted a series of training and testing experiments for
selecting the proper feature and classification model.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 4, Article 161. Publication date: December 2022.



161:14 • Chen et al.

5.2.4 Experiments on T2I Microgesture Classification. In this experiment, we first compared a set of machine-
learning architectures for classifying the selected discrete gestures using different feature combinations. The
possible feature combinations are the channel-wise gradient only (C), the temporal gradient only (T), and the
combination of the channel-wise and the temporal gradients (T+C).

Experimental Conditions.
• Data Usage. To examine the generalizability of the gesture classification using EFRing, we adopted two data-
splitting schemes: 1) We used the data from all 14 users as within-user evaluation, with the split of 3:1:1 for
the training, the validation, and the testing data respectively; 2) We trained the models on the data from 11
users and tested them on three left-out users as a leave-three-user-out evaluation. The three left-out users
are selected based on their signal quality. Specifically, we calculated the average signal-to-noise ratio (SNR)
for each user’s data and picked 3 users whose SNRs are three lowest as three leave-three-out testing dataset.
During the leave-three-out experiment, we used a random 30% subset of the training data as the validation
data.

• Selection of Classification Models.We experimented and compared different machine-learning models for discrete
T2I microgesture classification, with the EFRing signal features in both the time and the frequency domains. For
the signal features in time domain, we experimented three models: Support Vector Machine (SVM), Multilayer
Perceptron (MLP, 4 layers, 1024 units per layer), and Convolutional Neural Network (same as the encoder
structure described in Section 4.2). To investigate the signal in frequency domain, we applied the process of
Short-time Fourier transform (STFT) on each feature channel. For example, under the feature extraction scheme
T+C, the STFT process will result in a 15-channel image tensor for each gesture, with each channel is a 2D
spectrogram image. Such data structure could be processed and classified using existing widely-used CNN
models, such as VGG [66], ResNet [30], DenseNet [35], and Visual Transformer (ViT) [14].

Training. To increase the model’s generalizability and avoid over-fitting, we adopted a data-augmentation
scheme by rolling each gesture sample along time axis by a random offset. We set the data-augmentation
probability to 0.5 for every sample during training. We also employed the label-smoothing technique [68] with
the smoothing parameter 𝜖 = 0.1 during training.
We trained all the chosen models on a desktop PC with dual RTX 2080 NVIDIA GPU, 32GB RAM, and one

Intel i7-8700 CPU. We used an Adam optimiser [43] (𝛽1 = 0.9, 𝛽2 = 0.999) with the learning rate of 1𝑒 − 4 for
model optimization. We decayed the learning rate by a factor of 0.1 if the validation loss is not decreasing for at
lease 5 epochs. For each model, we trained for 128 epoch in a batch size of 16. Our implementation was based on
PyTorch 1.10 with Python 3.8.

Results. Table 2 summarizes the testing accuracy of each classification model with different data feature
combinations. The result shows that using the combination of the channel-wise and the temporal gradients (T+C),
DenseNet achieved the highest accuracy for the within-user testing of 89.5%, while ViT performs the best on the
leave-three-users-out testing, with an average accuracy of 85.2%.

Overall, transferring the time-series signal to the frequency domain achieved a higher performance compared
to directly using the signal in the time domain. This could be because the 2D data representation of the signal in
the frequency domain allows the usage of deep neural networks for hidden feature extraction. The results also
show that in general, using the T+C data leads to a better performance than using T or C only. This suggests the
importance of both the channel-wise and the temporal features for T2I microgesture classification on EFRing.
Although the performance of ViT on the within-user data set is inferior to DenseNet (0̃.3% lower), it shows

a larger advantage on classifying the left-three-users-out testing data (0̃.8% larger) which could be less biased.
To this end, we chose ViT for further analysis and experiments. Table 3 shows the confusion matrix of the
leave-three-users-out cross-validation on ViT. The Check (g) gesture is the most challenging one (66%). The ViT
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Table 2. Testing accuracy of each gesture with different models. This table shows the accuracy on different model for both
within-user evaluation (W) and leave-3-user-out evaluation (L) under different feature extraction scheme: temporal gradient
(T), channel-wise gradient (C), and mix gradient (T+C). The upper part of the table shows the models train with feature in
the time domain. The lower part of the table is focusing on the evaluation in the frequency domain.

Model Ftr.
Average

(a) (b) (c) (d) (e) (f) (g) (h) (i)
W L W L W L W L W L W L W L W L W L W L

Time Domain
SVM T 52.6% 47.8% 64.4% 64.1% 48.7% 57.7% 75.3% 88.0% 49.4% 34.3% 62.2% 29.4% 41.0% 45.5% 33.7% 29.0% 45.3% 46.8% 38.7% 37.5%

C 67.3% 51.5% 66.5% 60.0% 52.1% 40.4% 86.5% 100.0% 62.3% 41.9% 74.8% 48.6% 68.6% 58.8% 74.2% 51.4% 60.9% 31.3% 65.8% 51.1%
T+C 75.8% 64.8% 82.4% 82.6% 58.9% 62.2% 87.6% 100.0% 69.9% 53.6% 84.0% 56.8% 78.5% 68.8% 75.6% 50.0% 77.2% 73.3% 77.6% 61.0%

MLP T 59.1% 51.9% 66.5% 70.0% 55.6% 60.7% 77.8% 84.0% 58.5% 58.3% 67.4% 41.7% 75.9% 37.5% 38.1% 34.0% 52.0% 55.8% 50.0% 34.2%
C 72.0% 63.3% 71.5% 90.0% 69.3% 64.0% 88.7% 100.0% 64.3% 48.0% 71.9% 45.1% 76.4% 65.0% 79.1% 53.7% 61.5% 69.7% 66.9% 67.7%

T+C 80.3% 74.1% 88.3% 100.0% 78.0% 85.7% 86.5% 100.0% 72.8% 68.0% 78.2% 60.5% 81.8% 76.2% 75.6% 52.5% 81.3% 87.1% 79.6% 63.9%
CNN T 75.9% 68.9% 83.9% 95.8% 98.5% 100.0% 82.0% 91.3% 64.5% 44.4% 77.1% 61.1% 59.5% 65.2% 63.2% 37.5% 76.6% 68.3% 81.0% 77.8%

C 82.7% 78.5% 83.0% 87.1% 94.9% 100.0% 86.7% 100.0% 79.9% 75.0% 76.3% 54.2% 68.8% 80.7% 83.7% 68.6% 83.8% 80.7% 92.3% 85.0%
T+C 86.1% 78.2% 90.3% 90.3% 95.8% 100.0% 84.2% 90.9% 79.4% 66.7% 80.3% 70.0% 74.2% 76.9% 88.1% 61.3% 91.6% 77.8% 92.3% 78.8%

Frequency Domain
VGG T 82.7% 75.6% 100.0% 96.4% 100.0% 96.6% 82.5% 95.5% 72.3% 72.2% 75.7% 59.5% 69.9% 68.2% 75.0% 55.0% 80.8% 68.2% 91.6% 92.0%

C 85.1% 82.2% 92.9% 96.6% 98.5% 100.0% 92.0% 100.0% 71.1% 62.8% 80.9% 73.3% 73.2% 81.5% 87.0% 66.7% 86.0% 87.9% 90.2% 83.3%
T+C 87.3% 78.9% 94.7% 96.7% 100.0% 100.0% 90.1% 100.0% 75.8% 56.3% 90.6% 70.3% 71.8% 69.6% 89.3% 48.6% 89.4% 85.7% 90.6% 96.3%

ResNet T 80.3% 74.4% 92.3% 100.0% 100.0% 100.0% 88.9% 95.5% 68.3% 50.0% 75.7% 69.0% 64.2% 73.7% 73.5% 46.5% 82.0% 74.4% 82.5% 78.1%
C 86.1% 76.7% 97.0% 100.0% 98.6% 100.0% 90.2% 92.3% 77.1% 47.8% 82.2% 71.4% 72.0% 72.7% 84.5% 66.7% 85.6% 84.9% 90.6% 71.0%

T+C 85.7% 76.3% 96.3% 100.0% 100.0% 100.0% 91.0% 100.0% 76.3% 53.5% 78.0% 74.1% 71.4% 70.4% 81.0% 53.9% 90.5% 81.1% 91.6% 70.6%
DenseNet T 84.3% 77.0% 97.0% 96.4% 97.9% 96.8% 88.9% 96.0% 72.0% 59.1% 84.0% 78.8% 66.7% 65.0% 82.8% 56.8% 87.9% 69.8% 87.8% 77.4%

C 86.0% 78.9% 98.5% 100.0% 100.0% 100.0% 91.0% 100.0% 72.2% 52.8% 81.1% 71.1% 71.0% 64.5% 86.0% 72.7% 85.5% 87.5% 95.2% 76.5%
T+C 89.5% 84.4% 97.8% 100.0% 100.0% 96.9% 92.3% 100.0% 78.0% 62.5% 81.7% 78.8% 80.4% 75.9% 94.2% 83.3% 92.7% 79.0% 93.4% 89.7%

ViT T 87.2% 77.0% 97.1% 90.6% 100.0% 100.0% 92.1% 91.3% 74.5% 73.9% 87.3% 83.3% 74.5% 60.7% 81.1% 62.2% 89.1% 65.2% 91.8% 80.7%
C 87.5% 81.9% 91.8% 96.4% 94.6% 100.0% 90.9% 100.0% 81.2% 75.0% 83.2% 73.5% 78.4% 88.9% 90.3% 63.4% 87.5% 93.8% 91.2% 64.7%

T+C 89.2% 85.2% 95.0% 100.0% 98.6% 100.0% 90.2% 100.0% 81.3% 83.9% 91.5% 87.1% 78.4% 71.0% 85.2% 65.8% 93.7% 85.7% 89.3% 85.2%

model tends to confuse Check (g) and Swipe Right (d) as both gestures involve the thumb motion towards the
right side. The confusion matrix also shows that the model is able to distinguish between the symmetric gestures
(e.g. Swipe Left (c) and Swipe Right (d), Swipe Up (e) and Swipe Down (f), and Circle Clockwise (h) and Circle
Counter-Clockwise (i)). As for the simple gestures like Tap (a) and Double Tap (b), the classification performance
remains consistently high across different users.

Transfer Learning for Personalized Model. In the real-world scenario, transfer learning has been widely used to
adopt a general classification model to a personalized model using a small amount of user-specific data. Therefore,
we also experimented the transfer-learning process on the trained ViT models with a small amount of data from
the three left-out users. Specifically, we chose a random 20% subset of training data (8 gesture samples per label
per person) from these three users. We adopted a data-augmentation scheme by rolling each gesture sample
along the time axis by a random offset with a probability of 0.5. The model was tested on three left-out-users’
testing set every 5 epochs. The results (Figure 8) show that the average testing accuracy increases from 85.2% to
87.4% after 35 epoch of training.
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Table 3. Confusion matrix of ViT from leave-3-user-out cross-validation. The horizontal axes indicates the prediction while
the vertical axes annotates the ground truth label. Darker cell-shade indicates higher accuracy.

GT Prediction

(a) (b) (c) (d) (e) (f) (g) (h) (i)

(a) 100% 0% 0% 0% 0% 0% 0% 0% 0%
(b) 0% 100% 0% 0% 0% 0% 0% 0% 0%
(c) 0% 0% 100% 0% 0% 0% 0% 0% 0%
(d) 0% 0% 0% 84% 0% 6% 10% 0% 0%
(e) 0% 0% 10% 0% 87% 3% 0% 0% 0%
(f) 3% 0% 6% 3% 3% 71% 3% 0% 10%
(g) 0% 0% 0% 5% 5% 13% 66% 0% 11%
(h) 6% 3% 3% 0% 0% 0% 3% 86% 0%
(i) 0% 4% 11% 0% 0% 0% 0% 0% 85%

Fig. 8. Testing accuracy on the personalized model through transfer learning. The horizontal axis is the number of the
training epoch, and the vertical axis is the accuracy on classifying the testing set using the personalized model.

Ablation Study on the Number of Receiver Antennas. To study the effectiveness of the multi-receiver EF system
in EFRing, we ran an ablation study on the number of receiver antennas used, to simulate ring designs with
different numbers of antennas. Specifically, we randomly replace certain numbers (from 1 to 4) of channels on
the recorded raw signal with Gaussian noise. We ran the ablation experiment using the leave-three-user-out data
set. The results (Figure 9) show that using more antenna leads to higher testing accuracy, with an 28.5% increase
from using one antenna to using five antennas.

User Impact. We also conducted an experiment to further investigate users’ impact on their discrete gesture
performance. Specifically, we experimented the impact of the user’s finger size and age on the accuracy of
classifying his/her discrete T2I microgestures. We trained 14 leave-one-user-out ViT models to test 14 users’
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Fig. 9. Results of the ablation study on number of receiver antenna. The horizontal axes indicates number of antenna used.
The vertical axes is the testing accuracy.

data respectively. For each leave-one-user-out ViT model, we trained it on 13 user’s data for 64 epoch and tested
the trained model on the left-out user’s data. The average accuracy of these leave-one-user-out models is 81.1%.
For each user, we calculated his/her thumb-to-index-finger length ratio, which is the ratio of his/her thumb
width to the length of his/her index finger. Two Pearson product-moment correlation tests were conducted to
investigate the user dependency of EFRing classifying discrete T2I microgestures. The results showed that there
was no significant correlation between the user’s thumb-to-index-finger length ratio and the gesture-classification
performance of the leave-one-user-out model (r2 = -0.50, p = 0.12), and no significant correlation between the
user’s age and the classification performance of the leave-one-user-out model (r2 = 0.19, p = 0.58).

Thermal Drifting. We further conducted an experiment to investigate the potential impact of the heat dissipation
of the hardware on the system performance. Specifically, we kept EFRing running for 10 hours and we asked 2
users who didn’t participate in the previous studies to record 10 testing samples for each gesture in every 2 hours.
The experiment was done in an in-door lab under a controlled temperature of 25◦𝐶 . In every 2 hours, we also
measured the temperature from both the sensor chip and the ring surface. We then test the collected testing data
on our leave-3-users-out model. Figure 10 shows that the temperature of the sensor chip (mean = 25.61◦𝐶 , SD =
1.22◦𝐶) raised from 23.6◦𝐶 to 27.0◦𝐶 , while the temperature of the ring (mean = 25.62◦𝐶 , SD = 0.10◦𝐶) remain
relatively stable throughout the 10-hours experiment period. The testing accuracy (mean = 85.35%, SD = 1.48%)
in every 2 hours varied during the experiment period. The Pearson product-moment correlation tests showed
that in every 2 hours, there was no significant correlation between the testing accuracy and the ring temperature
(r2 = -0.58, p = 0.23), and no significant correlation between the testing accuracy and the chip temperature (r2 =
0.27, p = 0.60).

5.2.5 Experiments on Gesture Detection. In the real-world scenario, the EFRing sensing system should firstly
detects whether a T2I microgesture is performed by the user, and then applies the classification model on the
extracted gesture signal. For this purpose,
We randomly selected and re-invited twelve users from the previous study (7 males, 5 female, mane age =

25.75, SD = 1.82) for collecting additional “negative” data set of the label NONE with EFRing worn on their index
fingers. To simulate a real-world usage scenario, we consider two “negative” situations: 1) the thumb is not in
contact with the index finger; 2) the thumb is in contact with the index finger but staying still. For each situation,
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Fig. 10. Results of the thermal-drifting experiment. The horizontal axes indicates the device-running duration. The left
vertical axes is the testing accuracy. The right vertical axes is the temperature. The purple line with diamond marker is
the testing accuracy for every two hours. For the two red lines, the one with square marker denotes the measured ring
temperature every two hours, while the one with circle marker indicates the measured sensor chip temperature in every two
hours.

we record 5-minute signal data ( 57,000 frames of data under the sampling rate of 190Hz) from each person. The
software and hardware setup was similar to the pilot experiment (Section 4.1). Upon the collected “negative”
data, we simulate the real-world data stream by applying a 16ms (3-frames) sliding window across the data with
the step size of 5ms (1 frame). For each window, we computed the channel-wise gradient (Section.5.2.3) as the
data feature. The sliding window operation and feature extraction process yields 8043,753 data for training and
409,967 for testing, while each data is a vector with the dimension of R(10×1) . We also randomly extract the the
“positive” data samples (i.e. the signal that is recorded under a T2I microgesture) from our discrete-gesture data
set (Section 5.2.1) in the same amount of the “negative” data. Noted that the “positive” data samples were chosen
from the same twelve users where the “negative” data samples were recorded from.

With the “positive” and the “negative” data, we trained a binary SVM classifier. We employed the grid-searching
mechanism to find the optimal set of hyper-parameters (RBF kernal, C = 1000, g = 0.1) for the SVM classifier. A
five-fold cross-validation showed an average window-level classification accuracy of 96.5%. During the real-time
detection, we applied a smoothing algorithm as Xu et al. [81] and Chen et al. [11] did. In particular, we treated
adjacent sequences of continuous positive detection which lasted more than 1 seconds as a valid detection (i.e.
187 continuous positive windows under our setting). In practice, to reduce the noisy shifting, we tolerated if a
long consecutive positive sequence was separated by few negative detection, and treated the whole sequence
as a valid detection. We then used the segmented signal clips for future classification. To verify the real-time
performance of our detection approach, we run a gesture detection experiment on our data set by simulating
real-time data stream with sliding window algorithm across all data sample. Our experiment shows an 97.9%
gesture-level detection accuracy with a recall of 97.2%.

6 CONTINUOUS T2I MOTION TRACKING
Besides the discrete microgestures, the T2I interaction space also supports the feasibility of continuous motion
tracking [48]. Therefore, we investigate the feasibility of EFRing detecting and tracking continuous T2I subtle
motions, such as dragging the thumb along the index finger as a virtual slider [72]. We proposed and evaluated
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Fig. 11. The signal processing pipeline for our continuous 1D tracking algorithm. The system take raw data as input. A
low-pass filter was applied to remove circuit noise. we applied sliding windows on the filtered data. We then calculate the
channel-wise gradient on each sliding window before feeding to the gesture detector. If the gesture detector detect the user
is performing gestures, we fit the raw window data to a 𝜖-SVR for absolute position estimation. We further employed a
customized Kalman Filter to smooth out the regression results.

an algorithm for robust and accurate continuous 1D tracking of the thumb’s position on the index finger. We also
evaluated the real-time performance and the user experience of EFRing tracking continous T2I motion through a
1D Fitts’-Law study.

6.1 Tracking Method
Equation 3 suggests that the output voltage from Rx(s) alters proportionally to the distance between the finger
and Rx(s). As we slide the thumb between the distal and the proximal phalanx on index finger, the area between
the thumb and the index finger, namely purlicue circle, will change as the thumb moving. The 5-channel signal
from EFRing can reflect such space changes from the root of the index finger by measuring the change of Rx(s)’s
output voltage. Such changes of Rx(s) output voltage could potentially be predicted with a regression-based
algorithm, and be mapped to the thumb’s position as it slides along the index finger.

Figure 11 shows the pipeline for tracking the thumb’s position on the index finger using EFRing. Specifically,
we build a machine-learning-based regressor, which takes a feature vector extracted from a 16ms (3-frames)
sliding window of signal from EFRing as input and output an estimation of the current absolute position. In
the implementation of real-time regression, we further employed a customized Kalman Filter [38] to smooth
out the regression results. In addition, various hand sizes and finger lengths of different users could affect the
ranges of the signal values while users moving the thumb along the index finger. For users who have a higher
ratio of a user’s thumb width to his/her index finger length (i.e. large thumb over short index finger), the moving
range would be smaller, and the sensor signal range would also be smaller, and vice versa. To reduce the effect
of this problem, we adopt a short “practice" section for the new user before he/she starts using EFRing. That is,
we measure the extreme value of the new user by asking he/she to perform one complete sliding movement (i.e
sliding from index finger tip to root and back to finger tip) for personal normalization/calibration. To this end, we
can build a personalized profile by extracting the maximum and minimum sensor values for each channel, and
normalize the new-incoming real-time signal using these range values. This “practice” process only needs to be
executed once, as adopted by many commercial products (e.g., finger-print/face password).
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6.2 Offline Experiments
To achieve the goal of continuous T2I motion tracking, we first conducted an offline experiments on comparing
different types of regression models.

6.2.1 Data Collection. We recruited 12 participants (7 males, 5 females, mean age = 25.83, SD = 2.48) from a
local university. All of them are right-handed, and without any prior experience on smart ring. The software
and hardware apparatus are same as our aforementioned data-acquisition experiments. The experiment started
after the participant filling a pre-questionnaire with demographic information and the measurement of his/her
thumb-to-index-finger length ratio. The experiment facilitator first show a 600-pixel-long slider with its handle
gradually moving in a constant speed (400 pixels/second) on the screen. The participants were asked to follow
the moving handle by moving his/her thumb on the distal and middle phalanx of his/her index finger. They can
practice until they felt confident on following the reference slider handle on the screen. Before start recording, the
facilitator asked the participants to place his/her thumb on the tip of the distal phalanx as starting point. During
recording, the references slider move from left to right and back to left in the constant speed of 400 pixels/second,
and this is counted as one recording section. For every time step in each section, we recorded the signal from
EFRing as well as the position of the reference slider handle as ground-truth values. Each participant completed
two recroding sections where we treat one section as training data and the other one as testing data. The average
time duration of one recording section across 12 participants is 542 frames (about 2.85 second).

6.2.2 Experimental Conditions. We performed an offline experiment on continuous T2I tracking by training and
testing a series of regression models. To ensure the real-time performance of the proposed tracking method, we
focused on comparing the light-weight regression models, including k-nearest neighbors (k-NN, k=5), Epsilon-
Support Vector Regression (𝜖-SVR, RBF kernal, C=0.1, g=1), and a small multilayer perceptorn (MLP). Similar to
the discrete gesture classification, we experimented these regression models under two training strategies: 1)
experimenting the generic models trained and tested by the data from all the participants with a split of 2:1:1
for the training, the validation, and the testing data respectively; 2) experimenting the personalized models that
are trained and tested from each participant only, also with the split of 2:1:1 (i.e. training : validation : testing).
During the experiment, we simulate a real-world data stream by applying a 16ms sliding window across the
signal data with the step size of 5ms.

6.2.3 Results. We calculated the mean squared error (MSE) of each regression model. To examine the smoothness
of the simulated real-time tracking, we also compute the 2𝑛𝑑 derivative of the regression result after applying
our customized Kalman Filter. A smaller 2𝑛𝑑 derivative value reveals a smoother regression results. Table 4(a)
and (b) shows the result of our experiments on the generic models and the personalized models respectively. For
the generic models, 𝜖-SVR shows the smallest MSE, while MLP has the smoothest prediction. Although MLP
shows the best smoothness, it relies on large data for a better convergence. In practice, it is reasonable to collect
a small amount of data from a new user for calibration. Such calibration data can also be used for training a
personalized model for a better performance. One-way ANOVA on the performance of the personalized model
showed a significant difference among the three tested models in terms of MSE (F(2,33) = 7.07, p < 0.005) and
2𝑛𝑑 derivative (F(2,33) = 25.80, p < 0.0005). The post-hoc pairwise comparisons show that the MSE of 𝜖-SVR is
significantly smaller than k-NN (p < 0.05) while there is no significant difference between 𝜖-SVR and MLP. The
2𝑛𝑑 derivative value of k-NN is significantly larger than 𝜖-SVR (p < 0.005) and MLP (p < 0.005). As a result, we
use the personalized 𝜖-SVR for our user study on real-time T2I motion tracking.

6.3 Usability Study
We also conducted a user study to investigate the real-time performance and usability of 1D T2I motion tracking
with EFRing.
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Table 4. Results for the regression experiment. This table summarizes the mean squared error (MSE) as well as the second
derivative of the regression result after applying Kalman Filter for three different models. In table (a), all the models were
trained and tested on the data from all users. In table (b), all the models were separately trained and tested on individual
user data, and the results are averaged across 12 personalized models.

(a) Regression results on the generic models.

Models k-NN 𝜖-SVR MLP

MSE↓ 3.8% 3.5% 4.8%
2𝑛𝑑 Derivative↓ 1.24 × 10−3 1.77 × 10−4 9.39 × 10−5

(b) Regression results on the personalized models.

Models k-NN 𝜖-SVR MLP

MSE↓ 3.5% 2.3% 4.5%
2𝑛𝑑 Derivative↓ 8.26 × 10−4 2.74 × 10−4 3.13 × 10−4

Fig. 12. The interface of our fitts’ law study. Users are required to move the slider handle into the target area. Once success,
the target ares will shows in red.

6.3.1 Participants and Apparatus. All the twelve participants in the data-acquisition study (Section 6.2.1) were
invited back to evaluate the system. The software for this experiment was developed with Qt5.6 framework in C++,
where we implemented a 𝜖-SVR model with LIBSVM library [9]. A customized Kalman Filter was implemented
using the Eigen library [27]. A real-time gesture detector (Section 5.2.5) was also implemented in this study. All
the participants are required to wear EFRing on the proximal phalanx of their right-hand index fingers during
the experiment.

6.3.2 Task and Metrics. Fitts’ Law [16] has been widely used for evaluating a input interface by modeling human
motor behaviour [4, 53]. In Fitts’ Law, the task’s index of difficulty (𝐼𝐷 , in bits) is defined as:

𝐼𝐷 = log2 (
𝐴

𝑊
+ 1) (8)
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Fig. 13. Fitts’ Law Regression Result. The 𝑥 axes is the index of difficulty (𝐼𝐷 , in bits), while the 𝑦 axes is the task completion
time (𝑇 , in ms). The purple points are results for different 𝐴 ×𝑊 conditions from our study, while the red line is the linear
regression result to fit them.

where 𝐴 is the distance from the starting point to the target,𝑊 is the width of the target region. Fitts’ Law
indicates the correlation between the task-completion time 𝑇 and the task’s index of difficulty 𝐼𝐷 through a
linear equation as below:

𝑇 = 𝑎 + 𝑏𝐼𝐷 (9)
where 𝑎 and 𝑏 are the regression coefficient. The performance of task can be evaluated by solving the linear-
regression problem and examining the correlation of determination (𝑟 2) for the goodness of fit.
We designed a 1D target-selection task, moving the handle to select the rectangular target on the sliding bar,

for our study. We included 6 𝐴 ×𝑊 conditions, with 2 levels of 𝐴 (201 and 392 pixels) and 3 level of𝑊 (50, 60,
and 70 pixels), yielding 6 𝐼𝐷 ranging from 1.95 bits to 3.13 bits. 𝐴 was measured from the left end of the sliding
bar to the center of the target.𝑊 was the width of the rectangular target. Each combination of 𝐴 ×𝑊 repeated
for 10 times.

During the study, the participants wearing EFRing can control the slider handle by moving his/her thumb on
the index finger. Before each trial, the experiment facilitator first asked participants to place his/her thumb on the
tip of the index finger as the starting point for calibration. At the beginning of each trial, as shown in (Fig. 13),
there was a target in a specific width 𝐴 appeared at a specific position 𝐷 on the sliding bar. As the trial starts, the
participants were instructed to move the slider handle from the starting point to the target as fast and as accurate
as possible. Upon successfully selecting the target region (i.e. the slider handle hits the target), participants were
told to lift his/her thumb from the index finger for conformation. We measure the time duration between the
task-starting timestamp and the participant-conformation timestamp, as the task-completion time.

After the experiment, the participant completed a user-experience questionnaire [52] on their experience (1 -
strongly disagree, 7 - strongly agree) of the system.

6.3.3 Results. We drew a quantitative analysis on our Fitts’ Law study as well as a qualitative analysis on the
user-experience questionnaire.

Fitts’ Law Analysis. We compute the average time consumption for every 𝐴 ×𝑊 combination across different
users. The average task-completion time per trial is 2028.05ms (SD = 141.83). Figure 13 shows the index of
performance of 1D target selection using EFRing, by plotting the result of linear regression between between
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task completion time and index of difficulty (ID). The regression statistic shows the 𝑟 2 is 0.86 (p < 0.05) which is
closed to the results of previous research on 1D Fitts’ Law [4], inferring that users using EFRing could potentially
achieve similar performance on 1D target selection as they did on the touch screen with their fingers. We also
performed the Pearson product-moment correlation on the participants’ thumb-to-index-finger length ratio and
their task-completion time, to investigate the user dependency of our approach. The results showed that The
Fitts’-law task-completion time was strongly negatively correlated to this ratio (r2 = -0.60, p < 0.05), indicating
the users with shorter index fingers tended to finish the selection task faster. This follows the assumption of Fitts’
Law that shorter distance yields shorter reaching time.

Usability and User Engagement. The questionnaire results (Figure 14) show that participants rated the system
is easy to learn (6.33/7, SD=0.49) and easy to use (6.25/7, SD=0.62). The engagement of using EFRing for target
selection achieved an average score of 6.58/7 (SD = 0.67), and the intuitiveness of the interaction is rated averagely
6.58/7 (SD = 0.51). Two participants reported that it was “easy to get familiar with the system". Two other
participants commented that “the experience is super impressive.", and one participants explicitly mentioned that
“it is amazing to control the slider without touch the screen" and she “can’t wait to recommend it to her friends".
Another participant mentioned that he “feel very confident to use the system."

7 EFRING APPLICATIONS
As shown in our experiments, EFRing offers a reliable and real-time input method for both discrete microgesture
classification and continuous motion tracking of T2I interaction. In this section, we present three potential
applications: Google Cardboard VR interaction, 2D sketching on the touch surface, and device control. Noted
that the presented applications were distilled from our experiment participants’ comments on how EFRing could
be used in the real-life scenario.

7.1 Google Cardboard VR Interaction
While Google Cardboard VR offers a low-cost and immersive VR experience to the masses, its interactivity is still
limited to either finger tapping on the conductive tape or head orientation most of the time [11]. This limitation
may affect the user experience in many VR applications such as gaming, viewing 3D objects, and video playback
control.
In our proof-of-concept mobile applications, we connected EFRing to an Android smartphone wirelessly

through Bluetooth. Therefore, EFRing can serve as an input device for various VR scenarios of Google Cardboard.
For example, directional discrete gesture such as Swipe Up, Swipe Down, Swipe Left, and Swipe Right could be
used for 3D world navigation in mobile VR (Fig. 1e). Combined with Tap or Double Tap, EFRing also could
facilitate menu navigation in mobile VR (Fig. 1f). Continuous controls such as rotating 3D objects and rolling
video playback progress bars can also be supported by the continuous sliding gesture with EFRing (Fig. 1g).

While we mainly focus on the thumb-to-index-finger microgesture interaction that is not directly on the ring
device (i.e. off-ring interaction), existing smart-ring research has shown the feasibility of on-ring interaction
with various sensors (e.g., capacitive touch sensors [5, 70], and buttons [2]). Combining the off-ring interaction
supported by EFRing and the existing on-ring interaction could enrich the interaction space of smart-ring devices.

7.2 2D Sketching on the Touch Screen
EFRing could serve as an alternative input method to the GUI-based control on the touch screen. Fig 1g shows
an application example on using EFRing for parameter adjustment in a 2D-sketching task on the touch screen.
EFRing’s continuous sliding gesture could be used to control the sketching parameters, such as the stroke weight
and the color. In such an application, artists can adjust these parameters while drawing, instead of lifting their
fingers from the screen and touching the GUI elements to toggle the parameter-adjustment mode. Besides, the
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Fig. 14. The questionnaire results of our usability study, including standard system usability scale (SUS) and customized
questionnaires on the user experiences of our system.

discrete T2I gestures can also serve as shortcut commands for mode switching. For example, the Circle Clockwise
gesture can represent as the undo command, while the Circle Counterclockwise gesture is the redo command.
Swipe Up and Swipe Down can be used for switching between different sketching tools such as brush and eraser.
Besides the 2D sketching application, the similar control concept can be adopted to the other GUI-based

controls. For example, in a text-editing application, user can highlight or change the style of the text using T2I
microgesture after he/she drags and selects the text. Continuous motion tracking could be used for tuning the
font size or changing the text color.

7.3 Device Control
With EFRing, users can interact with other smart devices, such as mobile phones, in a private and unobtrusive way.
For instance, during a meeting or in a library, the discrete T2I gestures recognized by EFRing can be used to hang
up the incoming phone or handle the notifications quietly. In the context of IoT, users can use the T2I continous
motions supported by EFRing to control the smart-home devices. For instance, adopting the device-selection
method using finger pointing [13], users can adjust the room brightness/temperature or the music volume by
sliding their thumbs on their index fingers after selecting a particular home device.
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8 LIMITATIONS AND FUTURE WORK
In this paper, we focus on the EF-sensing technique and the signal-processing algorithms for supporting T2I
microgesture interaction with only one index-finger ring. Although we show the feasibility of EFRing for detecting
a various of subtle thumb movement patterns including discrete gestures and continuous motion, there are still
remaining some limitations and potentials for future improvements.

Real-world Experiments. The presented EFRing experiments mainly focused on the context of users sitting still
indoor without carrying any item in their hands. Existing research shows that the user experience of the smart
ring could be affected by the body movement (e.g., walking and running) and the hand cumber (i.e., carrying
heavy items) [64]. Therefore, it is predictable that the EFRing signals induced by the T2I microgestures could be
different in these different contexts. As an important future work, it is worth to investigate gesture classification
and tracking with EFRing in different real-world contexts: walking in different speeds, and carrying items in
different weights.

Non-bare-hand Usage Scenarios. We mainly focused on the bare-hand situation of EFRing wearing. While the
external interference of the EF-sensing signal is mainly from the conductive objects, it is unknown how the
hand-worn accessories may affect the signal quality for gesture classification and tracking. For instance, when a
user is wearing the glove on the EFRing-wearing hand, the glove will cover the device and the fingers, and the
coverage may affect the finger movement and the signal features. In another scenario of hand-worn accessory,
the metal rings on the other fingers may interfere the EF-sensing signal around the index finger.

Impact of Environment. Our experiments were done in a in-door lab under a controlled temperature of 25◦𝐶 . It
could be possible that the electric field would vary under different temperatures due to the change of Y0 (Equation.
2). According to Equation 3, the influence of Y0 will be theoretically neglected while calculating the final output
voltage 𝑉 𝑘𝑜 . However, more experiments need to be done in the future to further verify the sensing capability of
EFRing in different environmental conditions. In addition, it could also be arguable that the electric field would
be affected by any nearby conductive objects. In practice, a passive conductive object, such as metallic rings worn
on the fingers, would generate a constant interference on the EF signal. Noted that we preprocessed the signal by
calculating the temporal-wise gradient and the channel-wise gradient for detecting both discrete and continuous
T2I gestures. Such local gradient-based features would not be affected by any global constant influence. Therefore,
we could argue that our solution is robust for any static nearby conductive objects. We plan to conduct more
experiments on it to further verify our assumption.

Comparison with GUI. With the T2I microgestures enabled by EFRing, it would be necessary to explore the
mappings between the EFRing-enabled gestures and the real-world applications, and investigate the effective-
ness of these gestures on different interaction tasks. Previous research showed that gesture-based interaction
outperformed graphical-user-interface-based (GUI-based) interaction by yielding shorter task-completion time
and lower workload [82]. We hypothesize that EFRing may yield a similar better performance over GUI-based
interaction in the applications such as VR navigation, touch-screen 2D sketching, etc. We plan to conduct a
thorough usability experiment in the near future.

Mode Integration. Our experiments showed the feasibility of discrete gesture classification and continuous
motion tracking using EFRing, but the current implementation and experiments treated these two types of T2I
interaction as two separated modes for different applications. In the real-world scenario, it is possible that the
user may switch between these two modes to fulfill different interaction tasks. Therefore, there is a need on
designing the mode-switching mechanism between discrete gesture classification and continuous motion tracking.
In addition, there would be a potential need for the activation technique (e.g., on-ring tapping) for starting the
classification/tracking pipeline, to avoid false-positive detection.
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Work as An Untethered Device. The current prototype of EFRing microgesture classification and tracking was
run on a desktop PC as a proof of concept. The performance could be negatively affected while directly running
the machine-learning models on the mobile devices (e.g., smart phone/watch/glasses) due to the model complexity
and the computational constraint on the device. While this issue could be solved with the future hardware
advancing in the smart devices, one potential solution that can be feasible in the near future is leveraging the
advantage of modern high-speed mobile networks (e.g., 5G cellular network) [55, 86]. Guo Tian [28] suggested
that the modern deep-learning-based mobile applications could benefit from the hybrid approach of combining
the on-device and the cloud-based classification. More specifically for EFRing, we could run the light-weight
gesture-detection and the continuous motion-tracking process in real-time locally on the smart devices. For
discrete gesture classification, the EF-sensing signal could be simultaneously sent to the cloud server through the
cellular network (e.g., 5G) in low latency.
While our current experiments were done with a tethered device as a proof of concept, it can be argued

that the quality of the EF signal (e.g. SNR) may decrease if the device is not connected to the earth ground (i.e.
as a mobile device), namely in untethered mode [54]. To reduce the signal noise in our current prototype, we
increased the grounded area of the PCB by covering a grounded copper pour to reduce high-frequency signal
noise. In the software part, we implemented a low-pass noise filter before extracting signal features to suppress
the high-frequency noise. To test the performance of EFRing in the untethered mode, we conducted an informal
preliminary test, where we recruited 2 male users (25 and 26 years old) to record 40 testing samples for each
discrete microgestures with EFRing connected to an unplugged laptop. The testing experiments on the trained
ViT model resulted in an average accuracy of 83.5%, a 1.7% drop compared to our aforementioned experiments
with the testing data collected from the tethered device. As suggested by Matthies et al. [54], the signal quality in
the untethered standalone device could be improved by either enhancing the capacitive coupling between the
human body and the sensing antennas or creating a small electric field around the body and the electrode. We
will experiment with these approaches for EFRing in-depth in the future.

Robustness of Gesture Detection. In this paper, we mainly focus on sensing both discrete and continuous gestures
with EFRing. However, the gesture detection, as a system activation process, is another important component
for a real-time always-on sensing system in real-world usage. In section 5.2.5, we conducted a proof-of-concept
experiments on the gesture-detection algorithm. The algorithm was also deployed in real-time for our usability
study (Section 6.3). Both studies showed that our current detection algorithm could perform satisfactorily in the
laboratory environment. However, as a real-world usage scenario could be more complex compared with the
laboratory setting, our detection system could be improved in two aspects. On one hand, as we only considered
the NONE case when the user sat still, more usage scenarios (e.g. walking, running, carrying heavy items, etc.)
needed to be included as the future work. On the other hand, we collected our “positive" and “negative" samples
in two separate sections, which may introduce environmental bias in our data set. We will further verify our
detection algorithm on a larger and more balanced data set.

Beyond 1D Continuous Tracking. During our experiments, we showed that EFRing is capable for detecting 1D
continuous movements of T2I motion, in the direction parallel to the distal phalanx of the index finger. The width
of the phalanx is usually shorter than its length, leading to lower resolution of the thumb motion on the direction
perpendicular to the distal phalanx of the index finger. This places extra challenges on tracking the thumb motion
on this direction and 2D T2I motion. Tracking 3D thumb motion may involve mid-air gestures which could evoke
unique signals due to the capacitive nature of EF sensing. In the future work, we will experiment new design of
antenna layout and EF signals to explore 2D/3D thumb motion tracking.
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9 CONCLUSION
In this paper, we present EFRing, an index-finger-worn ring-form device for detecting T2I microgestures through
EF sensing. Our experiments show that the signals recorded by EFRing could be used for both discrete microgesture
classification and continuous motion tracking. The ViT-based classification showed an average within-user
accuracy of 89.2% and an average cross-user accuracy of 85.2%, for nine T2I microgestures. For the continuous T2I
continuous motion tracking, our 𝜖-SVR-based method can achieve the mean-square error of 3.5% for the generic
model and 2.3% for the personalized model. The 1D-fitts’-law target-selection study shows that the proposed
tracking method with EFRing is intuitive and accurate. With EFRing, we demonstrate the feasibility of T2I
microgesture interaction through only one index-finger-wearable device, and we hope to enrich the interaction
paradigm for micro-space user interfaces.
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