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Figure 1: (a) AirThumb enable mid-air thumb-based interaction. (b) Usage scenarios of AirThumb, including: sitting, standing,
and walking. (c) AirThumb recognizes 13 gestures, including one idle gesture (label 0), 8 one-thumb gestures (label 1-8), and 4

two-thumb gestures (label 9-12).
ABSTRACT

Taller and wider screens have become a new design tendency on
current commercial smartphone market. However, the increasing
size of the touch screen on the phone limits the interactivity of the
user’s thumb-based interaction. In this paper, we present AirThumb,
a machine-learning-based sensing technique to support mid-air
thumb gesture interaction on smartphones using the built-in sen-
sors. AirThumb detects mid-air thumb-based gestures by leveraging
multi-sensor data fusion technique, which combines the reflection
pattern of an ultrasonic signal that propagates from the top speaker
to the bottom microphone with subtle motion data from the phone’s
built-in IMU sensor. Our experiment shows that AirThumb achieves
overall recognition accuracy of 94.55%, 94.52%, and 86.14% in sit-
ting, standing, and walking scenarios, respectively. In addition, we
demonstrate that the proposed multi-sensor data fusion technique
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enables AirThumb to quickly adapt to new users with fewer training
samples required.
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1 INTRODUCTION

Thumb-based interaction is often considered an efficient and conve-
nient way to interact with mobile phones [14, 29], but its limitations,
such as reduced dexterity and the increasing size of touch screens,
hinder thumb-based smartphone tasks like typing [1], text editing
[2, 21], and target selection [30]. Moreover, multi-touch gestures
are difficult with one thumb [9], and the thumb can obstruct the
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screen [2, 28]. A recent study also shows that users with long finger-
nails struggle with smartphone interactivity [7], and the experience
worsens with wet or greasy fingers.

Various methods, including GUI design [15], on-screen thumb
gestures [20], whole-device motion gestures [9], and back-of-device
interaction [2] aim to improve one-handed interaction. One poten-
tial complement to standard on-screen touch input is using mid-air
space above the screen for hand gestures [38]. This method al-
lows users to interact without touching the screen, reducing finger
obstruction and enabling interaction in situations where touch is
not possible. However, current technologies require motions to
be significant (e.g., hand swipes or circles) for recognition. Some
existing systems for mid-air gestures require additional hardware,
such as infrared motion capture [10], specialized touchscreens [13],
or optical accessories [35]. Thus, there is a need for solutions that
enable mid-air thumb gestures on low-cost, commercially available
smartphones.

In this paper, we present AirThumb, a novel gestural interaction
system that utilizes smartphone’s built-in sensors, including the
speaker-microphone pair and the inertial measurement unit (IMU),
to recognize mid-air thumb gestures in various scenarios, such
as sitting, standing, and walking (Fig.1 (a)(b)). AirThumb emits
linear frequency-modulated ultrasonic chirp signals from the top
speaker, which are affected by hand gestures during propagation.
By learning the distortion in the received sound captured by the
microphone, we can retrieve the thumb moving pattern in the near-
surface above the screen. We also interoperate with the built-in
IMU data to facilitate the gesture recognition task.

In this research, our main contributions are threefold:

(1) We developed AirThumb, a system for recognizing thirteen
mid-air thumb-based gestures that leverage an acoustic sens-
ing approach with the fusion of IMU sensor signals.

(2) We conducted a series of experiments to evaluate AirThumb .
The results indicate that the AirThumb detects 13 mid-air
thumb-based gestures accurately and robustly while users
are sitting, standing, and walking. We also show that in-
corporating IMU sensor data improves gesture recognition
accuracy, system robustness across scenarios, and system
adaptiveness between users.

(3) AirThumb shows potential to expand the thumb-based input
space from on the screen to above the screen, which unlocks
the design space to support more intuitive and expressive
interaction.

AirThumb offers a low-cost consumer-grade gesture recognition
system that can be deployed on all commercially available mobile
devices. This research shows great potential, contributing to en-
riching mobile interactions with novel interfaces. In our user study,
participants expressed great interest in AirThumb and provided
suggestions for its future investigation.

2 RELATED WORKS
2.1 Thumb-based Mobile Interaction

A major challenge faced in the context of mobile interaction is
that devices are often used in a condition where the user has lim-
ited physical and attentional resources available [16]. For instance,
some users frequently have their one hand occupied with holding
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or carrying objects, which significantly reduces the interactivity
of mobile devices [27]. Given the nature of single-handed devices
holding poses where the thumb is naturally placed above the screen
[8], thumb-based interaction shows its privilege for single-handed
mobile interaction [5, 15, 31, 32, 38]. Bergstrom-Lehtovirta et al. [3]
have identified an optimal functional thumb-motion area for com-
fort and efficient thumb-based interaction, which inspired numer-
ous researches on developing facilitating techniques for one-handed
thumb interaction on mobile devices.

Although thumb-based interactions on the screen offer natu-
ral and efficient input experiences for mobile applications, chal-
lenges such as the fat-finger problem remain [30]. To this end,
researchers have proposed using the space above the screen for
interaction to support mid-air interaction [11, 12]. Kato Kunihiro
and Ikematsu Kaori [17] supported above-screen thumb-posture
detection through acoustic sensing. Their system enables in-air
menu navigation by placing the thumb in different positions above
the screen. Fabrice Matulic et al. [25] designed a two-mirror device
to enable vision-based gestures recognition for VR context. Kuni-
hiro and Lim [23] focused on detecting above-screen thumb-based
posture through IMU-sensing rings. They recognized 20 gestures
with an accuracy of up to 99%.

However, these approaches face limitations, often requiring ex-
ternal devices or modifications to the hardware, which hinders the
widespread adoption of mid-air interaction. While Kato Kunihiro
and Ikematsu Kaori [17] proposed works to support in-air thumb
interaction without requiring external hardware, their method fo-
cused on detecting static thumb postures, which is still facing the
limitation for function extension and usage scenario adaptation.
AirThumb focuses on supporting mid-air thumb gesture-based in-
teraction in multiple scenarios, such as sitting, standing, and walk-
ing.

2.2 Acoustic-based Gesture Sensing

Acoustic signal offers a non-invasive and contact-free sensing ap-
proach for localization or tracking, which has been widely used
for many device-free gesture sensing tasks [4, 26, 33, 34, 36, 37].
One common approach to achieve this is using the Doppler Effect.
AudioGest [34] enables mid-air gestures sensing on a laptop by
transforming the device into an active sonar system that transmits
inaudible acoustic signals from the built-in speaker. The system rec-
ognizes the gestures by decoding the distortion of the echoes using
the Doppler shift. Similarly, Dolphin [33] and SonicOperator [22]
utilized the Doppler Effect to support mid-air gesture interaction
on the smartphone. Numerous research also detect mid-air gestures
by modeling the acoustic signal’s transition channel. UltraGesture
[24] detected 12 desktop mid-air gestures at an accuracy of 97% by
estimating the Channel Impulse Response (CIR). Strata [36] sup-
ported continuous finger tracking on the smartphone using similar
sensing mechanism. Researchers also explore the use of the mod-
ulation technique commonly used in wireless communication to
support fine-grained mid-air gesture detection. FingerIO [26] used
Orthogonal Frequency Division Multiplexing (OFDM) to modulate
the transmitted signal and tracked finger movements by analyzing
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signal distortion at the receiver, enabling centimeter-level continu-
ous tracking. AirThumb is largely inspired by the aforementioned
related works on acoustic-based mid-air sensing approaches.

We specifically focus on using chirp signals to recognize thumb
gestures. Compared to previous studies, these gestures involve
smaller motion ranges and are closer to the screen, making them
more suitable for daily shortcuts and reducing the user’s interaction
burden. Furthermore, AirThumb has the potential to achieve better
performance in dynamic thumb-based gesture detection.

3 USER PREFERENCE ON AIR THUMB
INTERACTION
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Figure 2: (a) Experienceable prototypes for the user study,
including pop-up menu, edge gesture, and far-end buttons.
(b) The data collection system interface. (c) Simulated sitting,
standing, and walking scenarios for data collection.

Before implementing AirThumb, we investigated the user pref-
erence and acceptance of AirThumb interaction for mobile devices.
A workshop study was conducted to compare the user preferences
for three common mobile interaction interfaces: (A) Pop-up Menu
(e.g. Apple’s Assistive Touch); (B) Edge Gestures on Android (e.g.,
swiping from the screen edge to go back); (C) Far-end Buttons (e.g.,
the menu or back button in the top-left corner).

Participants tested all candidate interfaces on an Android phone,
with experienceable prototypes for each (Fig. 2 (a)). An animated
indicator bar simulated mid-air actions for AirThumb’s preliminary
interaction. Six participants from local universities were required
to perform actions (e.g. 'go back, ’go homepage’) using different
interfaces on our experienceable prototypes and ranked the inter-
faces by preference. Feedback was gathered through interviews.
The study lasted about 30 minutes per participant.

As shown in Table 1, while far-end buttons were less favored,
some participants attributed their lower ranking of AirThumb to
habitual use of edge gestures (Android) or Assistive Touch (iPhone).
Most participants (P1, P2, P5) reported no significant differences
in fatigue between AirThumb and on-screen interactions, while P4
noted that AirThumb could reduce fatigue once users adapt. A par-
ticipant with long fingernails (P5) found AirThumb less fatiguing
than screen-based interactions. We summarized participants’ feed-
back on mid-air thumb-based interaction in three aspects as follows,
which provided potential design and implementation guidelines for
our further exploration of AirThumb:
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(1) AirThumb expands input channels: AirThumb could provide
an additional interaction channel to reduce occlusion and
simplify multi-touch actions, such as zooming and rotating,
for one-handed use.

(2) AirThumb provides alternative interaction in specific sce-
narios: AirThumb enables seamless interaction when users’
hands are wet, wearing gloves, or having long fingernails.

(3) Accidental trigger prevention: Users raise a concern about
the false alarm by unintended near-screen finger movements.

4 AIRTHUMB DESIGN
4.1 Sensing System

4.1.1 Sensing Principle. AirThumb detects mid-air thumb move-
ment by modeling the ultrasound transmission channel between the
built-in speaker and the microphone of a smartphone. Specifically,
we emit an ultrasonic signal from the top speaker, whose resonance
characteristics would be changed if there is an obstacle (e.g. the
thumb) moving on its propagation path to the bottom microphone.
By learning the distortion in the received sound captured by the
microphone, we can retrieve the thumb moving pattern in the near-
surface above the screen. During practice, we also observed that
the propagated sound would be distorted if the phone is non-static,
namely, when the user is walking. We also observed that mid-air
thumb movement would cause subtle movement of the smartphone.
Therefore, we incorporate the built-in accelerator and gyroscope
data from the smartphone as input features to facilitate the gesture
classification task. The system structure is shown in Fig. 3.

4.1.2  Signal Processing. We adopted a similar sensing system pipeline
as in previous research [18, 19], where we used the chirp signal as
the baseband signal for the transmitter. The signal is a linear chirp
divided into four segments, which is inaudible to users: 16—18kHz,
18-20kHz, 20-22kHz, and 22-24kHz, with each segment 200 sam-
ples long and 500 samples blank intervals between them. This struc-
ture helps minimize the impact of distant reflections. After being
recorded by the mobile device’s microphone, the raw signal passes
through a high-pass filter (HPF) to remove low-frequency noise
while retaining high-frequency features. A matched filter then iden-
tifies each segment, followed by FFT using a Hamming window
with size 1024 to extract frequency features, with 171 discrete fea-
tures selected from 16kHz to 24kHz. We sampled the accelerometer
and gyroscope at 50Hz, resulting in a feature vector of length 6
per sample. During practice, we set each gesture to the length of
2 seconds. Therefore, we normalized each gesture recording to a
signal clip consisting of:

. {200 samples X 4 + 500 samples x 4
' 48000 Hz

2s

s ~ 32 segments

(where we dropped some of the initial signals). As a result, this
process yields an acoustic feature vector of R171%32 and an IMU
feature vector of RO%1%0 for each gesture.

4.1.3 Gesture Classification. We adopted a two-stage gating ges-
ture classification strategy (Fig. 3) on the extracted feature as pre-
vious research suggested [6]. Specifically, we first trained a light-
weighted binary classifier to perform gesture detection, namely,
distinguish between None gestures and others. We then train a
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Table 1: The table shows the workshop study results, users ranked four interaction methods by preference and comfort.
AirThumb was consistently ranked 1st or 2nd, indicating strong user preference.

Participants Rank 1st Rank 2nd Rank 3rd Rank 4th
P1 Edge Gestures AirThumb Pop-up Menu  Far-end Buttons
P2 Edge Gestures AirThumb Pop-up Menu  Far-end Buttons
P3 AirThumb Edge Gestures Pop-up Menu Far-end Buttons
P4 Pop-up Menu AirThumb Edge Gestures Far-end Buttons
P5 AirThumb Edge Gestures Pop-up Menu Far-end Buttons
P6 AirThumb Pop-up Menu  Edge Gestures Far-end Buttons
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Figure 3: AirThumb system pipeline. AirThumb consists of three main stages, including multi-sensor data streaming, signal

processing, and two-stage gesture recognition.

high-precision gesture classifier to achieve fine-grain classification
results. We evaluated our method across a set of machine-learning
classifiers in Section 5.

5 EVALUATION

5.1 Gesture Design and Scenarios

We evaluated AirThumb on a dataset consisting of 13 distinct mid-
air thumb gestures, including 8 one-thumb gestures, 4 two-thumb
gestures, and a default idle gesture, under three usage scenarios.
To form a representative dataset of mid-air thumb movements, we
summarized and refined commonly used gestures from previous
studies[12, 38]. Specifically, we incorporated gestures such as di-
rectional thumb swiping, thumb cycling, and tapping in mid-air.
Moreover, we included two-thumb gestures in our gestures set by
expanding directional swiping from one thumb to two thumbs. The
gestures are shown in Fig. 1 (c). In addition, we also performed
gestures when users are in different situations, where we identify
three typical smartphone usage scenarios: sitting, standing, and
walking (Fig. 1 (b)). We also incorporate a None gesture as an idle
gesture. As a result, we form a dataset consisting of 13 (gestures) x
3 (scenarios) distinct mid-air thumb gestures.

5.2 Data Collection

We implemented a data collection application on a Google Nexus
6P phone for the study. The application simultaneously records
acoustic data and IMU data for every gesture and stores them lo-
cally. We recruited 13 participants (7 females, 6 males) for the data
collection study. Their average age was 24, and 92.3% of them are
right-handed users. Each participant was required to record all
13 gestures in three scenarios: sitting, standing, and walking, pre-
sented in a Latin-square counterbalanced order. To reduce fatigue,
we provided a hand stabilizer for the sitting scenario and a walking
simulator for the walking scenario (Fig. 2 (c)). The participants are
required to perform 20 repetitions for each gesture under each sce-
nario, where the gesture order is randomized for each scenario. This
results in 3(scenarios) X 13(gestures) X 20(samples) =780 samples
for each participant. The study was conducted in a quiet room with
an average noise level of 31 dB.

During the study, participants were supplied with a Google
Nexus 6P phone with our data collection app installed. For each
gesture, they were instructed to click the start button on the app
(Fig. 2 (b)). A gesture illustration appeared on the screen for refer-
ence, followed by a 3-second count-down for preparation. Then a
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2-second blue dot animation was triggered as gesture guidance and
the participants were instructed to follow the guidance to complete
the gesture. The study lasted approximately 90 minutes for each
participant. As a result, we collected 7111 valid gesture samples.

5.3 Gesture Classification

5.3.1 Generic Model. In this experiment, we first compared a set
of machine-learning classifiers for classifying the gestures using
different feature combinations. The purpose of this experiment is to
determine an optimal feature combination strategy and a classifier
that achieves the best performance across all scenarios. Specifically,
we adopted 8-2 train-test data splitting strategy and experimented
across 4 machine-learning models including Support Vector Ma-
chines (SVM), Random Forest (RF), Multilayer Perceptron (MLP),
and Convolutional Neural Network (CNN). The results show that
CNN outperformed other classifiers, especially using feature fusion
(FusionCNN). In the sit scenario, FusionCNN achieved 94.55%; In
the stand scenario, it reached 94.52%; In the walk scenario, Fusion-
CNN had 86.14%, slightly behind SVM(RBF) (88.45%) using acoustic
features. The results show that with our feature fusion technique,
the recognition performance improves, especially showing more
robustness under noisy situations such as in the walking scenario.

5.3.2  Leave-One-Out Experiments. To evaluate AirThumb’s per-
formance with new users, we conducted a leave-one-out test. In
this test, data from one user was set aside as the test set, while data
from the remaining 12 users was used for training. We repeated this
process until all users were tested and averaged the performance for
each classifier. The results show that CNN generally outperformed
other classifiers (90.06% in sit scenario and 85.46% in walk scenario),
except for the stand scenario (FusionCNN is 92.55%), where the MLP
model with Fusion features achieved the highest accuracy (93.36%),
significantly surpassing traditional machine learning methods. The
confusion matrices of the best-performing models for each scenario
in the leave-one-out tests are shown in Fig. 4.

5.3.3 Transfer Learning for the Personalized Model. In the real-
world scenario, transfer learning has been widely used to adopt a
general classification model to a personalized model using a small
amount of user-specific data. To evaluate the adaptation of our
approach, we further experimented adopting a transfer-learning
strategy on the CNN model with a small amount of data from three
left-out users. Specifically, we trained a model on 10 out of 13 users’
data. We adopted similar a 8-2 train-test data splitting strategy for
each gesture on the three left-out users. We then progressively
increased the fine-tuned data sample of each gesture from their
training set and test on their test set.

As shown in Fig. 5, adding user data progressively improved
accuracy, showing an upward trend. In the sit and stand scenarios,
adding user data steadily improved accuracy, with fusion features
the trend will stabilize to a high value faster than others; in the
walk scenario, accuracy showed overall improvement but fluctu-
ated more, we attribute this to noise introduced by more dynamic
motion, resulting in less stability. The result demonstrates that in-
corporating user-specific data enhances performance, and in future
applications, user data can be added to a general model for quicker
and better results.
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5.34 Gesture Detection. We further evaluated the performance
of the binary gesture detector and observed that the accuracy of
the binary classification task was very high. In the general task,
the accuracy of most feature-based CNN models was around 99%,
except for imu-based CNN (IMUCNN) in the walk task, which
only achieved 90.85%. During leave-one-out training, the accuracy
reached a peak of 99.67%. CNN remained the most accurate model
for both tasks. Overall, when switching from the sit and stand
tasks to the walk task, accuracy decreased, with a more significant
drop when using only IMU features. However, acoustic and fusion
features still maintained high recognition accuracy.

6 LIMITATION AND FUTURE WORK

Although AirThumb achieves a promising mid-air thumb gesture
recognition performance, there are several limitations that merit
further improvements. Firstly, as a proof-of-concept, we conducted
a series of offline experiments to evaluate the concept of AirThumb,
while further real-time on-board implementation is necessary to
enable AirThumb in real-world usages. Further online evaluation
is also needed in our future work. Secondly, AirThumb is suffer-
ing from a relatively low accuracy in noise conditions such as in
walking condition, which raises an implementation challenge for a
robust real-time performance. In future works, we plan to explore
more advanced de-noising techniques or recognition algorithms
and evaluate with more data. Thirdly, as a proof-of-concept, we
only implement and test AirThumb on one device. Since the hard-
ware configurations (e.g. quality and location of the speaker and
microphone)on different devices are various, we plan to deploy and
evaluate our system on more devices.

7 CONCLUSION

In this work, we present AirThumb, a novel mid-air thumb-based
interaction technique that leverages sensor fusion technique by
combining acoustic sensing and IMU sensing. Through a two-stage
gating gesture classification strategy, AirThumb detects 13 mid-
air thumb gestures including 8 one-thumb gestures, 4 two-thumb
gestures, and a default idle gesture across three scenarios. We eval-
uate AirThumb through two types of experiments. The generic
model achieves recognition accuracies of 94.55%, 94.52%, and 86.14%
under sitting, standing, and walking scenarios, respectively. The
user-independent model shows the highest accuracies of 90.06%,
93.36%, and 85.46% under the same three scenarios. Although there
are small drops of accuracies for the user-independent models, we
show that AirThumb is capable to adapt on new users with fewer
training data required using transfer learning.
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Figure 4: The leave-one-out evaluation averaged the confusion matrices, recording the best classifier’s confusion matrix for
each scenario: (a) sit task, FusionCNN; (b) stand task, FusionMLP; (c) walk task, FusionCNN.
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Figure 5: The results of transfer learning on the CNN model demonstrate the accuracy curves of different feature-based CNNs
across various task scenarios: (a) sit scenario, (b) stand scenario, and (c) walk scenario.

Table 2: Generic model result on 12 gestures classification.

Scenario | Feature | SVM (Linear) SVM (Poly) SVM (RBF) RF MLP CNN
Sit Acoustic 84.07% 81.76% 85.12% 77.36% 87.21% 93.92%
Sit IMU 83.65% 85.95% 83.44% 87.84% 81.76% 88.47%
Sit Fusion 90.99% 90.57% 91.40% 92.24% 91.82% 94.55%

Stand Acoustic 88.60% 88.60% 89.91% 87.28% 88.82% 93.20%
Stand IMU 86.62% 88.60% 85.75% 89.25% 79.82% 87.72%
Stand Fusion 93.20% 93.42% 91.67% 93.42% 91.23% 94.52%
Walk Acoustic 87.76% 86.61% 88.45% 80.83% 76.91% 85.91%
Walk IMU 72.29% 75.06% 77.37% 79.45% 68.82% 72.98%
Walk Fusion 84.29% 84.98% 85.91% 85.68% 85.21% 86.14%
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